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The phase diagram of five-dimensional anisotropic gauge theories in a flat background has been
extensively explored during the last decade. Here, we present novel results for the phase structure
of the five-dimensional anisotropic SU(2) model embedded in a warped background. The static
potential in the deconfining region of the phase diagram, close to the transition to the layered
phase, provides evidence of a Yukawa mass, suggesting that the system is in a 4D Higgs-like
phase. As no symmetry has been broken by the boundary conditions, this phase appears to be
due to the warp factor. Whether the system is dimensionally reduced from a 5D phase to this 4D
Higgs-like phase, which would provide a mechanism for dimensional reduction via localization,
remains open.
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1. Introduction

Extra-dimensional theories offer a solution to the hierarchy problem. Even though collider
experiments have not provided evidence of the existence of extra dimensions, they have not ex-
cluded them either. All higher-dimensional theories must undergo dimensional reduction to be
compatible with the observed four-dimensional world. This can be achieved by compactification,
or localization and our work focuses on a possible way of achieving the latter.

Higher-dimensional theories are perturbatively non-renormalizable and therefore techniques
of lattice gauge theories provide a tool for their investigation. Usually, phase diagrams are obtained
and one seeks regions where the system is dimensionally reduced and a continuum theory can
be defined by means of a second order phase transition. The phase diagram of the pure five-
dimensional SU(2) lattice gauge theory has two phases (the 5D deconfining and confining phases),
which are separated by a first-order phase transition and thus it is physically uninteresting.

In 1984, Fu and Nielsen showed that if an abelian anisotropic higher-dimensional lattice gauge
theory is considered, there is an additional phase, called the layered phase [1]. In this new phase,
the 4D hyperplanes transverse to the extra dimensions can be seen as layers where the gauge fields
are localized. The existence of a critical point in the non-abelian case, where a 4D continuum
theory could be defined is still in doubt [2]. However, results from [3] suggest that interesting
physics happens close to the transition line from the Coulomb to the layered phase.

A well-known class of five-dimensional models are the so-called Randall-Sundrum models [4,
5], which are embedded in a warped background, given by

ds2 = e−2k|y|
ηµνdxµdxν +dy2 (1.1)

where k is the curvature. We also define f (y) = e−2k|y|, that is called the warp factor, for later
use. In these models, the extra dimension has a finite extent, L5, and 3-branes (or 4D layers) are
placed at y = 0 and y = L5. Even though the dimensional reduction of all fields in these models
is achieved by localization, the mechanism behind localization of gauge fields is still elusive, as
charge universality is violated when the usual techniques are employed. In this work, we make a
first attempt to investigate the gauge sector of the anisotropic SU(2) lattice gauge theory embedded
in a warped metric. The presence of a layered phase might signal a possible non-perturbative way
of localizing gauge fields.

2. The Mean-Field approach

The five-dimensional gauge action in the warped background in the continuum is given by

SAdS5 =
∫

d4x
∫

dy
[ 1

4g2
5

F2
µν +

1
2g2

5
f (y)F2

µ5

]
; f (y) = e−2ky (2.1)

We call this action SAdS5 as the extra dimension is in a slice of the AdS5 spacetime. Its discretized
version imposing an anisotropy is given by

SAdS5 =
β

γ
∑
4D

(
1− 1

2
ReTrUµν(n,n5)

)
+βγ ∑

5D

(
1− 1

2
ReTr f (n5)Uµ5(n,n5)

)
(2.2)
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where γ is the anisotropy parameter and the plaquettes along the usual four dimensions and those
extended in the extra dimension are given by Eq. (2.3)-(2.4) respectively, where µ,ν = 0,1,2,3

Uµν(n,n5) =Uµ(n,n5)Uν(n+a4µ̂,n5)U†
µ(n+a4ν̂ ,n5)U†

ν (n,n5) (2.3)

Uµ5(n,n5) =Uµ(n,n5)U5(n+a4µ̂,n5)U†
µ(n,n5 +a55̂)U†

5 (n,n5). (2.4)

The warp factor in our lattice action is anticipated to have an effect on the lattice spacing leading
to large finite-size effects. This suggests that the correct investigation of the system using Monte
Carlo simulations will be computationally expensive and, as we have no previous studies to guide
us to specific regions of parameter space, the first exploration was undertaken using the Mean-Field
approximation and specifically employing the saddle-point approach.

Following the standard procedure that is described in [6], we found the effective action to be

Seff = SAdS5 [Vµ ,V5]+ ∑
n;n5

[
∑
µ

u[Hµ(n,n5)]+u5[H5(n,n5)]

+∑
α

hαµ
(n,n5)vαµ

(n,n5)+∑
α

hα5(n,n5)vα5(n,n5)

]
(2.5)

where V and H are 2×2 matrices that are used to replace the group-constrained integration measure
in the path integral with a flat measure and vα and hα are their components after parametrization
(α = 0,1,2,3). We also define

e−u[HM(n,n5)] =
∫

SU(2)
DUe

1
2 ReTr(UHM) (2.6)

which gives

u
(
HM
)
=− ln

[ 2
ρM

I1(ρM)
]

; ρM =
√

∑
α

(RehαM)
2 M = µ,5. (2.7)

where I1 is the modified Bessel function of the first kind of order 1.
Then one usually finds the saddle-point equations and sets the fields to a constant value propor-

tional to the identity matrix. In our case, as the background depends on the extra dimension, there
is a mean-field value for each point along the extra dimension. This extra-dimensional dependence
of the mean fields was also seen in the construction of the SU(2) theory in an orbifold [7] and for
our convenience in first-order correction calculations, we made a scale transformation of the fields
so that the AdS5 action in Eq. (2.5) will look like the flat SU(2) gauge action, i.e. without the factor
f (n5) in front of the extra-dimensional plaquettes. The scaling of the fields is done only on the
fields that involve the extra dimension, whereas the fields in the usual four dimensions remain the
same

Vµ(n,n5) =V ′µ(n,n5)⇒Vµν(n,n5) =V ′µν(n,n5)

Vµ(n,n5) =
√

f (n5)V ′µ(n,n5)⇒Vµ5(n,n5) = f (n5)V ′µ5(n,n5). (2.8)

Looking at the effective action in Eq. (2.5) we see that we also need to rescale H5 as

H5(n,n5) =
1√
f (n5)

H ′5(n,n5) (2.9)
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so that we get
hα5(n,n5)vα5(n,n5) = h′α5

(n,n5)v′α5(n,n5). (2.10)

Rescaling the external field in the fifth dimension though, changes the term u5[H5(n,n5)] that be-
comes

e−u[H ′5(n,n5)] =
∫

SU(2)
DUe

1
2

√
f (n5)ReTr(UH5). (2.11)

The extra factor that involves the warp factor does not affect the nature of the group integral so it
can be evaluated as usual using character expansions which results in

u5(H ′5) =− ln
(

2
ρ5(n5)

√
f (n5)

I1
(
ρ5(n5)

√
f (n5)

))
(2.12)

where
ρ5(n5) =

√[
Re(h50(n5))

]2
+∑

A

[
Re(h5A(n5))

]2
. (2.13)

Next the saddle-point solutions are determined by setting the fields to a background value which,
in contrast to the flat case, has an extra-dimensional dependence, i.e.

Vµ(n,n5) = v̄4(n5)1 Hµ(n,n5) = h̄4(n5)1

V5(n,n5) = v̄5(n5)1 H5(n,n5) = h̄5(n5)1. (2.14)

This leads to the saddle-point equations given by

v̄4(n5) =
I2(h̄4(n5))

I1(h̄4(n5))

v̄5(n5) =
I2(
√

f (n5)h̄5(n5))

I1(
√

f (n5)h̄5(n5))

h̄4(n5) = 6
β

γ
v̄3

4(n5)+βγ v̄2
5(n5)v̄4(n5 +a5)+βγ v̄2

5(n5−a5)v̄4(n5−a5)

h̄5(n5) = 8βγ v̄5(n5)v̄4(n5)v̄4(n5 +a5). (2.15)

3. The phase-diagram

The first thing we did was to investigate the phase diagram. We made a specific choice of
boundary conditions, where we reflected the system in the negative n5 direction and then repeated
the system periodically. We call this Periodic Boundary Conditions (PBC) and we have checked
with other choices that the system in the middle of the fifth dimension is not affected by the bound-
ary conditions. Then we solved the coupled equations as given in Eq. (2.15) and for each layer (i.e.
each n5) we identified three phases according to the following:

• v4(n5) = 0, v5(n5) = 0 Strong-coupling phase (S)

• v4(n5) 6= 0, v5(n5) 6= 0 Deconfining phase (D)

• v4(n5) 6= 0, v5(n5) = 0 Layered phase (L).
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We computed the free energy at first order, in an analogous way to [7], to check the stability of the
critical points and, as far as we could check, those presented in this phase diagram are stable.

We chose to keep the curvature fixed to the value k = 0.10 and the lattice size in the positive
n5 direction to be N5 = 8. The layers in the negative n5 direction were matched with layers in the
positive n5 direction and thus we consider only the latter in the phase diagram given below. Even
though the transition to the confining phase seems to happen at the same point for all layers, we
observe that each layer goes from a deconfining phase to the layered phase at different values of
(β ,γ). Therefore, we observe an extra phase, a mixed phase, where some layers are in the weak-
coupling phase and some are in the layered one. This can be seen in Fig. 1 as the phase between
the orange and the red points.
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Figure 1: The phase diagram obtained for each layer for fixed k = 0.10. We observe three phases, the
confining(S), the deconfining(D) and the layered(L). However, there is a new phase that appears, the mixed
phase, in which some of the layers are in the layered phase and some are in the deconfining phase. The width
of the mixed phase increases with increasing k.

4. The static potential

As the main focus of our work is to find evidence of localization of gauge fields, we measured
the static potential for each layer at two points in parameter space to investigate its form. Keeping
the value k = 0.10 fixed and a lattice size of T = L = 32,N5 = 8, we chose values of (β ,γ) by
inspecting the phase diagram of Fig. 1. The first one was (2.50,1.00) which is away from any
phase transition and deep into the deconfining phase. We fitted the mean-field potential points to
four different forms: 4D Coulomb, 4D Yukawa, 5D Coulomb and 5D Yukawa. Unfortunately, we
could not unambiguously distinguish the form of the potential, as only the 4D Coulomb potential
could be excluded, while the rest appeared to be good fits to the potential in all 8 layers. For the
last few layers, both 4D and 5D Yukawa forms fitted the MF points well. Fits to all forms of the
potential for the last layer n5 = 8 can be seen in Fig. 2.

The second point considered was (2.30,0.505), which is close to the transition from the de-
confining to the mixed phase. This potential behaves as a 4D Yukawa one for all layers. Also,
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Figure 2: Fits to the static potential of the last layer n5 = 8 using various potential forms for lattice sizes
of T = L = 32,N5 = 8 for two different parameter space points: β = 2.50, γ = 1.00,k = 0.10 (left) and
β = 2.30, γ = 0.505,k = 0.10 (right).

starting from the first layer, n5 = 1, the 5D Yukawa and Coulombic potentials also fitted quite well.
At larger values of n5, the fits to these forms lose their goodness so, at least for the last layers, we
can say with confidence that the potential behaves as a 4D Yukawa one (Fig. 2).

All the above provide preliminary evidence that, as a Yukawa mass can be obtained, the system
close to the transition line is in a 4D Higgs-like phase and not in a Coulombic phase. To check that
the Yukawa mass is not the result of the finite extent of our system and remains non-zero in the
infinite-volume limit, we performed finite-size scaling on the Yukawa mass and indeed we could
get a non-zero value for the infinite-volume Yukawa mass on each layer, as shown in Fig. 3. This
further supports our suspicion that the system is in a Higgs-like phase and not in a Coulombic
phase.
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Figure 3: The infinite-volume Yukawa mass in lattice spacing units on each 4D layer for β = 2.30,γ =

0.505,k = 0.10,N5 = 8 as found by finite-size scaling analysis using lattice sizes of T = L = 24,32,48,100.
All error bars are tiny except for the last layer.

5. Conclusions and Future work

The mean-field calculations of the static potential show the existence of a Yukawa mass that
suggests the presence of a 4D Higgs-like phase close to the line of transition in the phase diagram.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
2
3
2

Five-dimensional Gauge Theories in a warped background Eliana Lambrou

This phase suggests that some symmetry breaking may be happening, which is not enforced by im-
posing certain boundary conditions as done in previous investigations [7, 8]. The only modification
in our system from the flat case, where the Higgs-like phase is absent, is the introduction of the
curvature along the transverse direction. Thus, we tentatively conclude that the warping breaks the
symmetry everywhere in the deconfining phase giving a Higgs-like phase there. This was not clear
from the form of the potential away from the transition line, but was not excluded either. So further
studies are necessary in order to clarify the nature of the phase in the weak-coupling regime.

We return to the question that motivated this project, i.e. whether there is a dimensionally
reduced phase close to the layered phase. If there is a 5D Higgs-like phase away from the transition
line, then we might have dimensional reduction via localization, analogous to the one found in [8],
where they explicitly broke the symmetry using the orbifold. If not, then the system, due to the
warping, behaves as a four-dimensional one everywhere outside the strong-coupling phase. It is
noteworthy that we have used a small extent of lattice points along the extra dimension, which
restricts the region of the mixed phase to a small width. It appears likely that the pure deconfining
phase is a finite-size effect of the fifth direction, and the infinite system is actually in a 4D Higgs-
like phase everywhere in the weak-coupling regime.

There are a number of open questions that still need to be resolved by further work. One
is whether this Higgs-like phase is physical, a lattice artefact, or a fake result of the Mean-Field
approximation. Also, nothing can be said about the layered phase at the moment. Studies using
Monte Carlo simulations are expected to show the true behaviour in this phase, which might be 4D
Higgs-like, or Coulombic. All in all, our tentative conclusion that there is a 4D Higgs-like phase
motivates a range of further tests and explorations, especially with numerical simulations, to clarify
the effect of warping.
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