
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
2
3
3

Gravitational waves from cosmological first order
phase transitions

Mark Hindmarsh
Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, U.K.,
and
Department of Physics and Helsinki Institute of Physics, P.O.Box 64, Fi-00014 University of
Helsinki, Finland
m.b.hindmarsh@sussex.ac.uk

Stephan Huber
Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, U.K.
s.huber@sussex.ac.uk

Kari Rummukainen∗
Department of Physics and Helsinki Institute of Physics, P.O.Box 64, Fi-00014 University of
Helsinki, Finland
E-mail: kari.rummukainen@helsinki.fi

David Weir
Institute of Mathematics and Natural Sciences, University of Stavanger, 4036 Stavanger, Norway
david.weir@uis.no

First order phase transitions in the early Universe generate gravitational waves, which may be
observable in future space-based gravitational wave observatiories, e.g. the European eLISA
satellite constellation. The gravitational waves provide an unprecedented direct view of the Uni-
verse at the time of their creation. We study the generation of the gravitational waves during a first
order phase transition using large-scale simulations of a model consisting of relativistic fluid and
an order parameter field. We observe that the dominant source of gravitational waves is the sound
generated by the transition, resulting in considerably stronger radiation than earlier calculations
have indicated.
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1. Introduction

The gravitational wave window to the Universe is about to open. The advanced LIGO grav-
itational wave laser interferometry detector [1] has just started collecting data, and will soon be
joined by advanced VIRGO [2] and KAGRA [3] detectors. These are expected to detect gravita-
tional wave signals from merging neutron star binaries and possibly from supernovae.

In the early Universe there are several processes which may generate observable gravitational
radiation, such as inflation, cosmic strings or other topological defects and first order phase tran-
sitions. These may be observable in proposed future space-based detectors, in the first place the
European eLISA satellite constellation [4], scheduled for launch in 2034. It consists of three satel-
lites in a triangular formation, which forms a laser interferometer with arm length of order 1 million
kilometers. Due to its large size, eLISA is sensitive to radiation at much lower frequencies than
the Earth-based interferometers, in the range 10−4–1 Hz. eLISA technology demonstrator, LISA
pathfinder, will be launched in December 2015.

eLISA and other proposed space-based interferometers have the right frequency response for
the detection of radiation form first order phase transitions at the electroweak scale and above. In
the Standard Model the electroweak transition is known to be a cross-over [5, 6, 7, 8], which does
not lead to a gravitational wave signal. However, a strong first order phase transition is possible in
various extensions of the Standard Model [9, 10, 11, 12, 13, 14, 15].

A first order phase transition proceeds as follows [16, 17, 18]: due to the metastability associ-
ated with the first order phase transitions, the high-temperature “symmetric” phase supercools until
critical bubbles of the low-temperature “broken” phase are spontaneously nucleated. These bubbles
grow until the bubble walls collide with other bubbles and the phase transition is completed. The
growing bubble walls push the fluid along, causing hydrodynamical flows, which may persist long
after the bubbles have vanished.

The generation of gravitational waves requires that the system has a non-vanishing quadrupole
moment. Thus, a single spherical bubble does not generate radiation. However, when the bubbles
collide the spherical symmetry is broken and gravitational radiation is possible. In the widely used
semi-analytical envelope approximation [19, 20, 21, 22, 23] the fluid is modeled to behave like the
order parameter field, and the gravitational waves are generated as the bubbles collide. Thus, the
gravitational waves originating from fluid flows after the transition has completed are ignored.

In this work we describe the phase transition using an effective relativistic fluid + scalar order
parameter model, where the model parameters can be fixed to thermodynamic quantities of the
original theory. Using large-scale numerical simulations, we observe that the dominant source
of the gravitational radiation are the acoustic waves generated by the bubbles: the sound of the
transition. The role of the sound waves was originally suggested in ref. [24]. Acoustic waves
remain active long after the transition itself has completed, for up to the Hubble time. The resulting
gravitational radiation can be orders of magnitude stronger than indicated by earlier results. Our
main results have been reported in [25, 26].

2. Effective theory

We describe the matter in the early universe with a relativistic fluid coupled with a scalar
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order parameter field φ which drives the transition. We note that φ needs not to correspond to any
fundamental field of some underlying microscopic theory. We use a potential of the form

V (φ ,T ) =
1
2

γ(T 2−T 2
0 )φ

2− 1
3

αT φ
3 +

1
4

λφ
4, (2.1)

where the parameters are adjusted to give the desired thermodynamic properties of the transition.
The rest-frame pressure p and energy density ε are

ε = 3aT 4 +V (φ ,T )−T
∂V
∂T

, p = aT 4−V (φ ,T ) (2.2)

with a = (π2/90)g, where g is the effective number of relativistic degrees of freedom. For details,
we refer to [26].

The energy-momentum tensor of the field-fluid system is

T µν = ∂
µ

φ∂
ν
φ − 1

2 gµν(∂φ)2 +[ε + p]U µUν +gµν p≡ T µν

field +T µν

fluid (2.3)

where U µ is the 4-velocity of the fluid. The equations of motion are now obtained from the energy-
momentum conservation ∂µT µν = 0, where we introduce a non-unique coupling term permitting
the transfer of energy and momentum between the field and the fluid [27, 28, 26]:

∂µT µν

field =−∂µT µν

fluid = ηU µ
∂µφ∂

ν
φ . (2.4)

The final equations of motion can now be written as [25]

−φ̈ +∇
2
φ − ∂V

∂φ
= ηW (φ̇ + vi

∂iφ) (2.5)

Ė +∂i(Evi)+ p[Ẇ +∂i(Wvi)]− ∂V
∂φ

W (φ̇ + vi
∂iφ) = ηW 2(φ̇ + vi

∂iφ)
2 (2.6)

Żi +∂ j(Ziv j)+∂i p+
∂V
∂φ

∂iφ =−ηW (φ̇ + v j
∂ jφ)∂iφ . (2.7)

Here W is the relativistic γ-factor, vi = U i/W the fluid 3-velocity, E = Wε is the fluid energy
density, and Zi =W 2(ε + p)vi momentum density. The right-hand sides of the equations (2.5–2.7)
describe the coupling of the field and the fluid, with the strength parametrized by η .

The traceless and transverse part of the energy-momentum tensor generates metric perturba-
tions:

ḧi j−∇
2hi j = 16GT T T

i j (2.8)

We use the procedure detailed in [29] to project the transverse part.
We refer to [25] for the details of the lattice implementation of the equations of motion. For

the scalar field, we use the standard leapfrog update, and the the relativistic fluid is evolved using
the donor cell advection method [30]. The lattice volumes vary up to 42003, using up to 24 000
cores on a Cray XC-30. A somewhat different lattice implementation of the fluid+field system is
presented in ref. [31].
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Figure 1: Deflagration (left) and detonation (right). In deflagration vwall < vsound, and the growing bubble
wall pushes the fluid in front of it. In detonation vwall > vsound, and the bubble wall drags the fluid behind it.

Figure 2: Fluid kinetic energy density at t = 500/Tc, 1000/Tc and 1500/Tc, at η = 0.15Tc, corresponding
to the growth phase of the bubbles, end of bubble collisions and after the bubbles have vanished. The shock
waves caused by the bubbles remain for a long time after the transition has completed.

3. Results

We show here results from simulations corresponding to relatively weak transition with latent
heat L = (9/40)T 4

c . The phenomenological field-fluid coupling parameter is set to η/Tc = 0.1,
0.15 and 0.2. For the detailed simulation parameters we refer to [26].

When η is small, the coupling between the field and the fluid is small, allowing the bubble
wall to propagate quickly. The moving bubble wall causes fluid flows. The three values of η

are chosen so that we obtain three different bubble growth types: at η = 0.1 the wall velocity is
vwall > vsound = 1/

√
3 (detonation), at η = 0.15 vwall≈ vsound (Jouguet) and at η = 0.2 vwall < vsound

(deflagration). The moving bubble wall causes fluid flows: in deflagration, the wall pushes a thick
layer (thickness ∝ bubble size) of fluid ahead of itself, whereas in detonation the bubble wall drags
a layer of fluid behind it. This is illustrated in Figure 1.

In Figure 2 we show three snapshots of fluid kinetic energy density from a simulation at
η = 0.15, taken at the bubble growth stage, collision stage and after the bubbles have vanished.
During the growth stage the kinetic energy is concentrated near the growing bubble walls. Af-
ter the bubbles have collided the bubble walls vanish, but the fluid flow continues propagating as
spherical compression waves, i.e. sound.

The contribution of the field and fluid to the stress-energy tensor (and hence gravitational
waves) can be quantified by introducing RMS fluid velocity Ū f and the equivalent field quantity:

(ε̄ + p̄)Ū2
f =

1
V

∫
dV τ

fluid
ii , (ε̄ + p̄)Ū2

φ =
1
V

∫
dV τ

field
ii . (3.1)
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Figure 3: Left: the relative contribution from the field (Ūφ ) and fluid (Ū f ) to the energy-momentum tensor.
Right: the gravitational radiation power ρgw as a function of time.
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Figure 4: Gravitational wave power spectra from detonation (left) and deflagration (right). The development
of characteristic power laws can be observed.

Here ε̄ and p̄ are average energy density and pressure. In Figure 3 we see that the field and fluid
contributions are comparable only during the bubble growth and collision stages. After the bubbles
have collided, Ūφ ≈ 0 but the fluid kinetic energy remains approximately constant.1 This implies
that the gravitational wave production also remains active for much longer than the transition time
itself; indeed, it can be estimated to continue for up to Hubble time [26]. From Figure 3 we can
also see that the gravitational wave power grows linearly with an universal slope:

ρGW = t C GL f (ε̄ + p̄)2Ū4
f , with C = 0.8±0.2 (3.2)

Here L f is characteristic flow length scale. We can estimate that the total power is up to two orders
of magnitude stronger than the estimate from the envelope approximation.

Finally, in Figure 4 we show an example of the development of the gravitational wave power
spectra from detonation and deflagration. We see the development of characteristic power laws,
with possibly non-universal power. For weak deflagration, we observe ρGW ∝ k−3 on the UV end
of the spectrum, deviating strongly from the prediction from the envelope approximation (ρ ∝ k−1).

1The slow decrease in Ū f is due to numerical viscosity of our simulation; the physical viscosity is negligible [26].
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4. Conclusions

We have studied the production of the gravitational waves in first order phase transitions in
the early universe. We observe that the dominant source of the radiation is the sound of the tran-
sition, i.e. compression waves generated by the growing bubbles. These sound waves propagate
through the universe long after the transition has completed. This strongly enhances the produc-
tion of the gravitational waves, giving up to two orders of magnitude stronger signal than earlier
eastimates. This enhances the possibility of observation of primordial gravitational waves in future
gravitational wave detectors.
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