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Owing to confinement, the fundamental particles of N = 1 Supersymmetric Yang-Mills (SYM)
theory, gluons and gluinos, appear only in colourless bound states at zero temperature. Compact-
ifying the Euclidean time dimension with periodic boundary conditions for fermions preserves
supersymmetry, and confinement is predicted to persist independently of the length of the com-
pactified dimension. This scenario can be tested non-perturbatively with Monte-Carlo simulations
on a lattice. SUSY is, however, broken on the lattice and can be recovered only in the continuum
limit. The partition function of compactified N = 1 SYM theory with periodic fermion boundary
conditions corresponds to the Witten index. Therefore it can be used to test whether supersymme-
try is realized on the lattice. Results of our recent numerical simulations are presented, supporting
the disappearance of the deconfinement transition in the supersymmetric limit and the restoration
of SUSY at low energies.
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1. Introduction

Confinement is the non-perturbative aspect of QCD responsible for the mass and the properties
of hadrons and mesons. Perturbation theory can provide a good description of strong interactions
at high energies, but a thorough analytical understanding of confinement at low energies is still
missing. The ’t Hooft limit [1] is a popular method to approach this problem in the context of the
AdS/CFT duality. Yang-Mills theories simplify drastically if the gauge coupling g is sent to zero
and the number of colors Nc to infinity while keeping fixed the ’t Hooft coupling λ = g2Nc.

For instance volume independence and correlation function factorization have been conjec-
tured for pure Yang-Mills theories in the large Nc limit. A discretized lattice model with only one
site 1d would be equivalent to the full theory defined in an infinite lattice [2]. Unfortunately the
hypothesis that leads to the volume reduction is not fulfilled in the large Nc limit: confinement is
not preserved, in the sense that the center symmetry of the Polyakov loop is spontaneously broken
[3]. A possibility to solve this issue is to couple gauge fields to quarks in the adjoint representa-
tion of the gauge group (AdjQCD), that give a stabilizing contribution to effective potential of the
Polyakov loop at least at one-loop order of perturbation theory [4, 5]. If only one massless adjoint
Majorana fermion is coupled to the gauge field, the model corresponds to the N = 1 Supersym-
metric Yang-Mills theory and the fermionic particles, the superpartners of the gluons, are called
gluinos.

Models with adjoint fermions are relevant not only for the full volume reduction. The AdjQCD
theories defined in four dimensions can be compactified on a torus R3×S1 and the fermion bound-
ary conditions in the compact dimension can be chosen to be periodic. A semiclassical expansion
for small compactification radius R is then expected to provide an analytical explanation for the
properties of confinement also far away from the limit Nc→∞ [6, 7, 8, 9]. As before, the important
assumption is the absence of a deconfinement phase transition that would otherwise disconnect the
small R regime from the physics at zero temperature, where confinement has to be understood. Lat-
tice Monte-Carlo simulations can provide a fully non-perturbative evidence for this scenario [10].

In this contribution we discuss our recent numerical lattice simulations for N = 1 Supersym-
metric Yang-Mills (SYM) theory and we present evidence that no deconfinement phase transitions
occurs in the chiral limit regardless from the length of R. Moreover, the partition function of com-
pactified N = 1 SYM with periodic fermion boundary conditions corresponds to the Witten index.
We show how the expected exact cancellation between bosonic and fermionic energy levels can be
used as a test for the realization of supersymmetry on the lattice.

2. The partition function and the Witten index of N = 1 SYM

Confinement is a crucial property of the N = 1 Supersymmetric Yang-Mills (SYM) theory.
At zero temperature the fundamental particles of the model, gluons and gluinos, appear only in
colorless bound states. Being in the adjoint representation of the gauge group, the gluino has
N2

c − 1 color degrees of freedom and therefore its contributions do not decouple in the large Nc

limit.
If one space-time dimension is compactified, antiperiodic boundary conditions applied to the

gluino field λ in the time direction bring to the trace of the Boltzmann factor exp(−ĤR) in the
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Hamiltonian formalism:

Z(R) =
∫

λ (R)=−λ (0)
DλDAµ exp

(
−
∫ R

0
dt
∫

d3xL (λ ,Aµ)

)
= Tr(exp(−ĤR)) , (2.1)

while periodic boundary conditions provide the so-called “supertrace” W (R):

W (R) =
∫

λ (R)=λ (0)
DλDAµ exp

(
−
∫ R

0
dt
∫

d3xL (λ ,Aµ)

)
(2.2)

= STr(exp(−ĤR)) = Tr((−1)F exp(−ĤR)) , (2.3)

where F is the fermion number.
The Grassmanian nature of fermion fields requires antiperiodic boundary conditions in the

time direction to reproduce correctly the partition function Z(T ) at non-zero temperature T = 1/R
in the path-integral formalism. However W (R) has an interesting cancellation between fermion and
boson contributions due to the (−1)F factor, that has been useful to study many different aspects of
quantum field theories. The function W (R) is known for example as “Witten index” in SUSY and
it provides information on spontaneous supersymmetry breaking [11]. Furthermore, as discussed
in the introduction, gluinos are expected to preserve confinement for all compactification radius R,
if periodic boundary conditions are applied to their fields in the time direction.

We study the compactified version of N = 1 SYM on the lattice with numerical Monte-Carlo
simulations for the gauge group SU(2). The integral of the continuum Lagrangian density

L (λ ,Aµ) =−
1
4
(Fa

µνFa
µν)+

1
2

λ̄a(γ
µDab

µ +m)λb , (2.4)

can be discretized on the lattice with the tree-level Symanzik improved action and the Dirac-Wilson
operator. The theory is supersymmetric in the continuum formulation if and only if the gluino mass
m is set to zero. Supersymmetry is however explicitly broken on the lattice and a simultaneous fine
tuning of the bare gluino mass mB and gauge coupling g is required to restore it in the continuum
limit. The renormalized gluino mass mR(g,mB) considered as a function of the bare parameters
will be zero in general for mB 6= 0. In our simulation we represent mR by the square of the adjoint
pion mass in a partially quenched approach [12].

3. Continuity of confinement for SU(2) N = 1 SYM

The first scan of the phase diagram has been done in the bare parameter space at fixed number
of lattice points Nt in the time direction. The compactification radius R changes as a function of
β = 2Nc/g2; in particular R→ 0 when β →∞. The results are presented in Fig. 1(a). The expecta-
tion value of the Polyakov loop distinguishes three different regions, depending on whether center
symmetry is broken for periodic or antiperiodic fermion boundary conditions, see Fig. 1(c). Re-
markably, the critical line where confinement is broken for periodic boundary conditions does not
intersect the line where the gluino mass vanishes, see Fig. 1(d), meaning that in the supersymmet-
ric limit there are no deconfinement phase transitions, as predicted. Due to the flat behavior of the
Polyakov loop effective potential for N = 1 SYM, finite volume corrections have been important
for a correct identification of the phase transition point, see Fig. 1(b). Alternatively, the couplings
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Figure 1: a) Polyakov loop expectation value on a 83× 4 lattice as a function of β and κ . b) Probability
distribution function for the Polyakov loop as a function of the spatial volume for β = 2.2 and κ = 0.16.
c) Phase diagram in the bare coupling space. Center symmetry is broken in the shadow region for both
periodic and antiperiodic fermion boundary conditions. The lower region marked by the light blue line is in-
stead confined for all fermion boundary conditions; in the remaining part of the coupling space confinement
persists only for fermion periodic boundary conditions. d) Lines of constant physics for the unimproved
Dirac-Wilson operator. The renormalized gluino mass vanishes along the blue line. Along the green lines
supersymmetry is softly broken by a specific constant value of the renormalized gluino mass.

κ and β can be hold fixed and the compactification radius R = aNt , where a is the lattice spacing,
can be changed by discrete steps by simply increasing and decreasing Nt (fixed scale approach).
In this case the systematic uncertainties related to the determination of the line of constant physics
are avoided. While the first scan has been done using unimproved Wilson fermions, this second
run has been done using tree-level improved clover fermions in order to reduce the lattice arte-
facts [13]. We have set the volume to 163×Nt , β = 1.65, csw = 1 and κ = 0.1750; the measured
pion mass at zero temperature is amπ = 0.64631(67). As shown in Fig. 2, the influence of the
periodic boundary conditions is drastic especially for small R, 〈|PL|〉 is always bounded even for a
163× 1 lattice. These results indicate further that confinement is stronger for a small than for an
intermediate compactification radius.
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Figure 2: Polyakov loop expectation value for periodic (blue) and antiperiodic (purple) boundary conditions
on a 163×Nt lattice.

4. Supersymmetry and the Witten index on the lattice

The Witten index W (T ) can be expressed in terms of the boson and fermion energy levels

W (T ) = ∑
bosons

exp
(
−EB

i

T

)
− ∑

fermions
exp
(
−EF

i

T

)
, (4.1)

where here and in the following we set T = 1/R for a better comparison between the Witten index
and the thermal partition function.

The Witten index is constant for a supersymmetric theory. If supersymmetry is not broken,
both the number and the precise energy value of fermion and boson states will match and the above
difference will be reduced to a constant equal to the number of unpaired ground states. It is for
example well known that W (T ) is equal to Nc for the N = 1 SYM theory [11]. Supersymmetry
is however explicitly broken on the lattice: the continuous translational symmetry is reduced to the
discrete subgroup of translations proportional to multiples of the lattice spacing a. In addition, for
N = 1 SYM theory, numerical simulations are impossible at exactly vanishing gluino mass.

A computation of W (T ) or equivalently of the difference of all bosonic and fermionic energy
levels would be a precise measure of the supersymmetry breaking on the lattice. This approach is
however rather difficult to implement since it would imply the knowledge of the value of the path
integral with its absolute normalization factor. However supersymmetry is explicitly broken on the
lattice, and therefore W (T ) is not anymore a constant independent from T since EB

i 6= EF
i . If we

derive the expression 4.1 above

EG(T ) =
∂W (T )
∂ (1/T )

= ∑
fermions

EF
i exp

(
−EF

i

T

)
− ∑

bosons
EB

i exp
(
−EB

i

T

)
(4.2)

and subtract a zero temperature value, EG(T )−EG(0), we get a graded energy density that can be
easily computed on the lattice. For unbroken supersymmetry this quantity should be zero. Any
deviation of EG(T ) from zero would then be a signal of explicit supersymmetry breaking. The
graded energy density EG(T ) becomes sensible to the mismatch of larger and larger fermion and
boson energy states at T increases, i.e. when the compactification radius R decreases.
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Figure 3: Energy density ε = EG(T )/V for periodic (blue) and antiperiodic (purple) gluino boundary con-
ditions.

To compute EG(T ) on the lattice, we simulate the theory for different Nt with periodic fermion
boundary conditions, then we proceed to the calculation of the energy density as in standard ther-
modynamics, see for example Ref. [14]. The final result is shown in Fig. 3. The energy density ε

for antiperiodic boundary conditions shows the expected thermal behavior, ε is small before that
the deconfinement phase transition occurs and it grows as T 4 at high temperature as for a free gas
of gluons and gluinos. The graded energy density is instead compatible with zero even for com-
pactification radius R twice smaller the critical Rc = 1/Tc where the deconfinement phase transition
occurs with fermion antiperiodic boundary conditions. appears only for a lattice with two sites in
the temporal direction. In that sense the critical compactification length L = 3a is the minimal
distance where supersymmetry is approximatively and dynamically restored in the infrared regime.
Strong lattice artefacts appear at distances smaller than or equal to two lattice spacings.

It is finally interesting to observe that EG(T ) exhibits a flat behavior for rather large values
of the adjoint pion mass, amπ ' 0.6. This fact is in agreement with the previous investigations
of the bound spectrum done by the DESY-Münster collaboration, where a degeneracy between
the gluino-glue and its boson counterpart has been observed to persist even for large value of the
adjoint pion mass, while a large lattice spacing leads to strong mass splitting [15, 16].

5. Conclusions

We have presented the first evidence for the persistence of confinement in N = 1 super-
symmetric Yang-Mills theory for all compactification radius R if periodic boundary conditions are
applied to the gluino field in all directions. In the near future we plan new simulations for different
number of colors and for different numbers of Majorana fermions N f > 1, to extend the results of
Ref. [17].
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