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1. Introduction

Non-Abelian infrared-conformal gauge theories have been considered as models for physics
beyond the Standard Model. In these models the anomalous dimension γm of the fermion operator
ψψ plays an important role. The scaling of the spectral density of the massless Dirac operator is
governed by the mass anomalous dimension [1]. The explicit calculation of the eigenvalue dis-
tribution is costly, but recent advances in applications of stochastic methods [2] have made the
mode number [3] of the Dirac operator a viable quantity to determine the mass anomalous dimen-
sion from. The theory which we are studying is SU(2) with N f = 8 fermions in the fundamental
representation, which lies within the conformal window [4].

The mode number of the Dirac operator,

ν(Λ) = 2
∫ √

Λ2−m2

0
ρ(λ )dλ , (1.1)

where ρ(λ ) is the eigenvalue density of the Dirac operator, is known to follow a scaling behaviour1

of

ν(Λ)' ν0(m)+C
[
Λ

2−m2]2/(1+γ∗) (1.2)

in some intermediate energy range between the infrared and the ultraviolet in the vicinity of the
fixed point. Here γ∗ is the mass anomalous dimension γm at the fixed point, ν0(m) is an additive
constant, C is a dimensionless constant, and m is the quark mass. The range where this power law
behavior holds is not known a priori, and needs to be determined by trial and error.

The spectral density scaling method has been applied to various models before [5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16], but in the case of SU(2) the coupling constant dependence of the mass
anomalous dimension has not been investigated before.

The mass anomalous dimension can also be obtained by using the Schrödinger functional mass
step scaling function [17]. In what follows we will compare results obtained using this method to
results obtained using the spectral density method.

2. Mass step scaling

We simulate SU(2) with N f = 8 using HEX smeared [18], clover improved [19] Wilson
fermions, using the same parameters as for the evaluation of the running coupling in [4]. We
tune the hopping parameter to κ = κc in order to have zero PCAC quark mass. We simulate the
theory at seven different values of β corresponding to measured gauge couplings from g2

GF = 0.55
to g2

GF = 9.49 on a V = 324 lattice, where g2
GF is evaluated using the gradient flow step scaling

method [4, 20].
For the evaluation of the mass anomalous dimension using the step scaling method, we set the

spatial gauge links to unity at temporal boundaries:

Ui(x, t = 0) =Ui(x, t = L) = 1. (2.1)

1In lattice units.
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Figure 1: The mass anomalous dimension as a function of the gradient flow coupling constant obtained
using the mass step scaling function. The different symbols correspond to different lattice size pairings. The
results deviate from the perturbative one loop result at large coupling. The fixed point is at g2

GF ∼ 6, and the
results for larger couplings are not understood.

The mass anomalous dimension γm is measured from the running of the pseudoscalar density renor-
malization constant [17, 21]

ZP(L) =
√

3 f1

fP(L/2)
, (2.2)

where

fP(t) =
−a6

3L6 ∑
y,z
〈Pa(x, t) ζ̄ (y)γ5

1
2

σ
a
ζ (z)〉, (2.3)

f1 =
−a12

3L12 ∑
u,v,y,z

〈ζ̄ ′(u)γ5
1
2

σ
a
ζ
′(v) ζ̄ (y)γ5

1
2

σ
a
ζ (z)〉. (2.4)

Here Pa(x) = ψ(x)γ5
1
2 σaψ(x), and ζ and ζ ′ are boundary quark sources at t = 0 and t = L respec-

tively. Now we can define the mass step scaling function as [17]

ΣP(u,s,L/a) =
ZP(g0,sL/a)
ZP(g0,L/a)

∣∣∣∣
g2

GF (g0,L/a)=u
(2.5)

σP(u,s) = lim
a/L→0

ΣP(u,s,L/a). (2.6)

We choose s = 2 and find the continuum step scaling function σP by measuring ΣP at L/a = 8,
10, 12 and 16. The mass anomalous dimension can then be obtained from the mass step scaling
function [21]. Denoting the function estimating the anomalous dimension γm(u) by γ∗(u), we have

γ∗(u) =−
logσP(u,s)

logs
. (2.7)
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Our preliminary results are shown in Fig. 1. The method gives results comparable to one loop
perturbation theory predictions at small gauge coupling g2

GF , but deviates from the perturbative
results at large coupling as the theory flows toward the fixed point at g2

GF ∼ 6 [4].

3. Spectral density method

We calculate the mode number per unit volume of Eq. 1.1 by using

ν(Λ) = lim
V→∞

1
V
〈tr P(Λ)〉 , (3.1)

where the operator P(Λ) projects from the full eigenspace of M = m2− /D2 to the eigenspace of
eigenvalues lower than Λ2, and the trace is calculated stochastically.

We use the lattices obtained from the step scaling analysis, and use between 12 to 20 well
separated configurations for each value of the gauge coupling. We calculate the mode number for
100 values of Λ2 ranging from 10−4 to 0.3.

We expected the two constants ν0(m) and m2 in Eq. 1.2 to be negligible since we have tuned
the quark mass mPCAC to zero and the additive constant ν0(m) is related to the part of the spectrum
that feels the effects of the nonzero mass. In principle the unknown renormalisation factor in
m = ZAmPCAC forbids simply setting these two constants to zero. In practice we observed the two
constants to be negligible: in our analysis we used

ν(Λ)'CΛ
4/(1+γ∗) (3.2)

and checked that the error relative to the form including all four parameters, Eq. 1.2, was O(10−3).
The fit range was determined by varying the lower and the upper limit of the fit range and

observing the stability of the fit and the parameter values and their errors. As a cross reference
we compared the value of γ∗ obtained using the spectral density method for small couplings to the
value obtained using the step scaling method in order to further assess wether the chosen fit range
was good or not.

In Fig. 2 we present the mode number data we have calculated. It is apparent that the smaller
coupling simulations suffer from finite size effects which manifest in the step-like structure of the
mode number curve as Λ→ 0, but this disappears at couplings g2

GF ≥ 2.8.
In Fig. 3 we plot the mode number divided by the fourth power of the eigenvalue scale as a

function of the eigenvalue scale squared with the chosen fit range and the fit function of Eq. 3.2
shown overlaid in red. The curves are in the order of descending gauge coupling. It is clear that
the chosen fit range for smaller coupling values, which appear as the lowest curves in the plot, goes
into the step-like structure of the mode number curve, but it is a relatively good approximation
of the average behaviour of the curve. When the data is presented in this way, we expect in our
massless case that there is a region where the curves are linear, which is the correct window for the
fit.

Our main result is shown in Fig. 4 where we plot the mass anomalous dimension γ∗ obtained
from fitting Eq. 3.2 to the data as a function of the gauge coupling g2

GF . In a similar fashion
to the results obtained using the mass step scaling method shown in Fig. 1, the spectral density
method seems to give results comparable with the one loop perturbative prediction for small gauge
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Figure 2: The mode number calculated for different gauge couplings on a V = 324 lattice.
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Figure 3: The mode number divided by Λ4 as a function of Λ2. The fit function and the fit range are indicated
by solid and dashed red lines respectively. The curves are in the order of descending gauge coupling.

coupling values. But whereas the mass step scaling method showed highly nontrivial behaviour in
our simulations at gauge coupling values above g2

GF ∼ 6, the spectral density method gives results
that exhibit consistent behaviour with increasing coupling.

4. Conclusions

We have determined the mass anomalous dimension of SU(2) gauge theory with eight Dirac
fermions in the fundamental representation of the gauge group using the spectral density method.
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Figure 4: The value of γ∗ obtained by fitting Eq. 3.2 to the data in Fig. 2 is shown with black points and the
one loop perturbative result with a red line.

We have demonstrated that the method gives results compatible with perturbation theory and with
nonperturbative mass step scaling method at weak coupling. As the coupling increases, the results
were observed to deviate from the perturbative result.

A major source of error that is not easily quantifiable is the choice of the fit range where Eq. 3.2
(or Eq. 1.2) is used to describe the data. Our choice of the fit range was guided by our preliminary
results using the mass step scaling method and requirements on the stability and quality of the
fit. The results at small coupling suffer from sensitivity to the variation of the fit range, but this
is not a problem at couplings where perturbation theory can be trusted as matching can be made
reliably. However, when comparing with the results from the mass step scaling method, the fitting
procedure would benefit from smaller lattice artefacts and well established setting of the fit ranges.
The larger coupling results were largely insensitive to the choice of the fit range, and consequently
it seems that the observed behaviour at large coupling is a genuine nonperturbative feature, and not
an artefact due to fit uncertainties.
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