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We present preliminary result for the study of the renormalization group evolution of tensor bilin-
ears in Schrödinger Functional (SF) schemes for N f = 0 and N f = 2 QCD with non-perturbatively
O(a)-improved Wilson fermions. First N f = 2+1 results (proceeding in parallel with the ongoing
computation of the running quark masses [1]) are also discussed. A one-loop perturbative calcula-
tion of the discretisation effects for the relevant step scaling functions has been carried out for both
Wilson and O(a)-improved actions and for a large number of lattice resolutions. We also calculate
the two-loop anomalous dimension in SF schemes for tensor currents through a scheme matching
procedure with RI and MS. Thanks to the SF iterative procedure the non-perturbative running over
two orders of magnitude in energy scales, as well as the corresponding Renormalization Group In-
variant operators, have been determined.
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1. Introduction

Tensor currents play an important rôle in interesting processes through which the consistency
of the Standard Model (SM) is being currently probed, as e.g. rare meson decays (see e.g. [2, 3] and
references therein) or precision measurements of β -decays and limits on the neutron electric dipole
moment (see e.g. [4]). Considering the tensor operator for two generical (and formally distinct)
flavours ψ1,ψ2 as Tµν = iψ1(x)σµνψ2(x), its O(a) improvement in the chiral limit is achieved by
considering the combination

T I
µν = Tµν +acT

(
∂̃µVν − ∂̃νVµ

)
(1.1)

where the coefficient cT was computed at 1-loop within the Schrödinger Functional (SF) in [5] and
reads cT = 0.00896(1)CFg2

0 +O(g4
0), for CF = (N2− 1)/2N and N colours. At vanishing spatial

momentum, the only non-vanishing two-point functions with boundary operators allowed by the SF
boundary conditions involve the "electric" components (see Eq. (2.1) below)

T I
0k = T0k +acT

(
∂̃0Vk− ∂̃kV0

)
(1.2)

where the second term in the parenthesis of the rhs vanishes when inserted in Eq. (2.1). This
operator renormalizes multiplicatively; i.e. the corresponding operator insertion in any on-shell
renormalized correlation function is given by

Ō(x,µ) = lim
a→0

Z(g0,aµ)O(x,g0), (1.3)

where g0, a are the bare coupling and the lattice spacing respectively and µ is the renormalization
scale. The renormalization group running is described by the Callan-Symanzik equations

µ
∂

∂ µ
Ō(x,µ) = γ(ḡ(µ))Ō(x,µ), µ

∂

∂ µ
ḡ(µ) = β (ḡ(µ)). (1.4)

Since we will work in a mass independent scheme (i.e. renormalization conditions will be imposed
in the chiral limit), the β -function and all anomalous dimensions will only depend on the renormal-
ized coupling ḡ(µ) and they can be expanded perturbatively in powers of g as

β (g)
g∼0
≈ −g3(b0 +b1g2 +b2g4 + . . .), γ(g)

g∼0
≈ −g2(γ0 + γ1g2 + γ2g4 + . . .) , (1.5)

with universal coefficients b0, b1, γ0 given by

b0 =
1

(4π)2

{
11− 2

3
N f

}
, b1 =

1
(4π)4

{
102− 38

3
N f

}
, γ0 =

2CF

(4π)2 . (1.6)

All the other coefficients of the expansions are scheme dependent.

2. Renormalization in SF schemes

In order to impose renormalization conditions we introduce a SF two-point function of the
tensor current with boundary sources of the form

kT (x0) =−
a6

2 ∑
y,z
〈T0k(x0)(ζ̄ (y)γkζ (z))〉 (2.1)
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and the respective improved correlator is then kI
T (x0) = kT (x0)+ acT ∂̃0kV |x0 . In order to avoid ex-

tra divergences arising from the boundary the correlator kT can be normalized with boundary-to-
boundary correlators

k1 =−
a12

6L6 ∑
y,z,y′,z′

〈(ζ̄ ′(y′)γkζ
′(z′))(ζ̄ (y)γkζ (z))〉 (2.2)

f1 =−
a12

6L6 ∑
y,z,y′,z′

〈(ζ̄ ′(y′)γ5ζ
′(z′))(ζ̄ (y)γ5ζ (z))〉. (2.3)

The (mass independent) renormalization conditions then read

Z(α)
T (g0,L/a)

kI
T (L/2)

f 1/2−α

1 kα
1

=
kT (L/2)

f 1/2−α

1 kα
1

∣∣∣∣∣
m0=mc,g0=0

. (2.4)

The freedom in the choice of α in (2.4) and in the angle θ entering spatial boundary conditions
[6] define a class of renormalization schemes. In the present work we have considered α = 0,1/2
and θ = 0,0.5,1. Following the standard SF iterative renormalization procedure [7], we define step
scaling functions (SSF) as

Σ
(α)
T (u,a/L) =

Z(α)
T (g0,a/2L)

Z(α)
T (g0,a/L)

(2.5)

The continuum SSF for a bilinear correlator [7, 8] and for the coupling [9, 10] are defined respec-
tively by

σT (g2) = exp

{∫ √
σ(g2)

g
dg′

γ(g′)
β (g′)

}
→ σT (u) = lim

a→0
ΣT (u,a/L), (2.6)

− log(2) =
∫ √

σ(g2)

g
dg′

1
β (g′)

→ σ(u) = ḡ2(2L), u = ḡ2(L), (2.7)

where the index α has been suppressed.

3. Perturbative one-loop computation

We can expand all the correlators entering Eq. (2.4), as well as renormalization constants, in
powers of g2

0

X =
∞

∑
n=0

g2n
0 X (n), (3.1)

where X in Eq. (3.1) can be either ZT , kT , kV , f1 and k1. The one-loop improvement for the kT (x0)

now reads
kI

T (x0) = k(0)T (x0)+g2
0k(1)T (x0)+ ag2

0c(1)T ∂̃0k(0)V (x)
∣∣∣
x0
+O(ag4

0) (3.2)

and the renormalization constant for α = 0 is given by

Z(1)
T (x0,L/a) =−

{
k̄(1)T (x0)

k(0)T (x0)
−

f̄ (1)1

2 f (0)1

+ac(1)T
∂̃0k(0)V (x)|x0

k(0)T (x0)

}
(3.3)

where the notation F̄(1) = F(1) + F(1)
bi + m(1)

c
∂

∂m0
F(0) stands for one-loop coefficients where the

contribution related to the critical mass and the boundary counter terms, have been subtracted [11],

3
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Figure 1: 1-loop lattice artefacts in the SSFs. On the left, the three lines correspond to the SW action for
three values of θ angle and the two different markers correspond to the two schemes α = 0,1/2 (note that at
1-loop f1 = k1 for θ = 0). On the right, a comparison between cutoff effects from Wilson and SW actions at
θ = 0.5 .

except for the term coming with c̃t . The 1-loop critical mass m(1)
c is taken from [12]. Following [13]

and [11], in order to study the approach to the continuum limit of the SSFs we define the relative
deviation

∆k(g2
0,L/a) =

ΣT (g2
0,L/a)|u=g2

SF (L)
−σT (u)

σT (u)
= k(∞)δkg2

0 +O(g4
0) (3.4)

where the one-loop coefficient (see Fig. (1)) is given by

δk =
Z(1)

T (2L/a)−Z(1)
T (L/a)

k(∞)
−1, k(∞) = γ0 ln(2) (3.5)

The dependence on a/L of the 1-loop renormalization constant can be described according to [14]
as

Z(1)
T (L/a)≈

∞

∑
ν=0

(a
L

)ν
{

rν + sν log
(

L
a

)}
. (3.6)

In order to assess the systematic uncertainties in fit coefficients, we tried several fit ansaetze by
truncating the series at different orders and changing the minimal value in the fit range [(L/a)min

,L/a = 48] as showed in Fig.2. We checked that, within systematic uncertainties, the correct value
of the LO anomalous dimension s0 = γ0 is reproduced; after that, the term with s0 can be subtracted
to improve the fitting precision. In the errors on the fit parameters the systematics related to the
choice of the ansatz has been taken into account in a conservative way. In order to extract the two-
loops anomalous dimension in the SF scheme for the tensor bilinear, we used a scheme-matching
procedure with a given reference scheme where γ1 is known. This bypasses a direct two-loop calcu-
lation in the SF. Since tensor bilinears renormalize multiplicatively, the same strategy employed for
quark masses [13] can be used. SF NLO anomalous dimension (listed in Table 1) can be written as

γ
(1)
SF = γ

(1)
re f +2b0χ

(1)− γ0χ
(1)
g (3.7)

where χ
(1)
g is related to a scheme matching for the coupling, and χ(1) is related to the finite part of

Eq. (3.6). In fact

χ
(1) = χ

(1)
SF,re f = χ

(1)
SF,lat −χ

(1)
re f ,lat , χ

(1)
g = 2b0 log(µL)− 1

4π
(c1,0 + c1,1N f ) (3.8)

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
2
5
0

Non-perturbative renormalization of tensor bilinears in SF schemes David Preti

0 0.05 0.1 0.15 0.2 0.25

−0.15

−0.1

−0.05

0

0.05

a/L

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

 

 

Z(1), theta=0.0
Z(1)−a0log(L/a), theta=0.0

Z(1)
f1 , theta=0.5

Z(1)
f1 −a0log(L/a), theta=0.5

Z(1)
k1 , theta=0.5

Z(1)
k1−a0log(L/a), theta=0.5

Z(1)
f1 , theta=1.0

Z(1)
f1 −a0log(L/a), theta=1.0

Z(1)
k1 , theta=1.0

Z(1)
k1−a0log(L/a), theta=1.0

Figure 2: Z(1)
T at 1-loop for various values of θ and for α (in particular the two choices of α correspond to

scheme labeled f1 and k1). The behaviour of the renormalization constant after the subtraction of the leading
logaritmic divergence is also displayed.

and χ
(1)
SF,lat = r0. Since Eq. (3.7) is independent on the choice of the “ref” scheme, we have cross-

checked our results using both MS and RI′ schemes ([15], [16] for finite parts, and [17] for the
2-loops anomalous dimension in both schemes).

4. Non-perturbative renormalization and running

Our non-perturbative computation has been carried out for both N f = 0,2 and is ongoing for
N f = 3 in parallel with the mass [1]. Once the renormalization constants given by imposing the
condition (2.4) have been computed on a given lattice of size L/a and the double lattice of size
2L/a, eq. (2.5) is used to obtain the non-perturbative value of the SSF. We have computed here
the SSFs for 14 values for the coupling in the range u = [0.8873,3.480] for quenched data, and for
6 couplings in the range u = [0.9793,3.3340] for N f = 2 (see Fig.3). Since we did not implement
O(a) improvement of the tensor operator in the quenched case, the continuum extrapolation is linear
in a/L and has been performed using lattices with L/a = {6,8,12,16} and 2L/a = {12,16,24,32}.
In the final analysis the smallest lattice has been discarded because it is affected by large cutoff
effects. In order to reduce the uncertainty on the extrapolation we have performed a constrained
fit between data from an O(a)-improved action and an unimproved one after testing universality
of the continuum limit. Regarding N f = 2, since both action and operator are O(a)-improved, the
continuum limit is approached quadratically. In this case the extrapolation has been performed
using L/a = {6,8,12} and 2L/a = {12,16,24}. Once in the continuum we adopted a polynomial
fit ansatz for the SSFs of the form

σT (u) = 1+σ
(1)u+σ

(2)u2 +σ
(3)u3 +O(u4) (4.1)

scheme s SF (α = 0) SF (α = 1/2) MS
γs

1/γ0 0.4113(33)−0.0132(1)N f 0.3767(33)−0.0111(1)N f 0.1910−0.091N f

Table 1: NLO anomalous dimension in the SF scheme for the two schemes corresponding to α = 0,1/2 and
θ = 0.5, compared with the anomalous dimensions in continuum schemes.
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Figure 3: SSFs for N f = 0 (left figure), N f = 2 (center figure), preliminary N f = 3 (on the right). Dashed
black line is the LO approximation, dashed blue line is the NLO approximation, red solid line is the fit
including the cubic term. Blue markers are non-perturbative points. In the plot on the right red and blue
points correspond to unimproved and 1-loop improved SSF respectively.

where the first two coefficients are kept fixed to their perturbative values

σ
(1) = γ0 log(2) , σ

(2) = γ
SF
1 log(2)+

[
1
2
(γ0)

2 +b0γ0

]
(log(2))2 (4.2)

and the cubic coefficient has been fitted for both quenched and two-flavour data. The running
between two scale µ1 and µ2 is given by eq. (1.4) and can be written as

U(µ2,µ1) = exp
{∫ ḡ(µ2)

ḡ(µ1)
dg

γ(g)
β (g)

}
= lim

a→0

Z(g0,aµ2)

Z(g0,aµ1)
. (4.3)

Once SSF has been fitted on the range of couplings, the non-perturbative running can be obtained.
The evolution coefficient is computed non-perturbatively as a product of SSFs U(µpt ,µhad) =

∏
n
i=1[σT (ui)]

−1 with ui = ḡ2(2iµhad). For both N f = 0 and N f = 2 we have computed n = 7 non-
perturbative steps (i.e. achieving a factor 27 in the ratio between µpt and µhad , see Fig.4), connecting
an hadronic scale µhad = 275MeV (484MeV for N f = 2) up to ≈ 35GeV (≈ 62GeV) an high en-
ergy scale, where perturbation theory is supposed to be safe. At those scales (computed with ΛSF

for N f = 0 and N f = 2 from [10, 18] respectively) the NP evolution is matched with perturbation
theory at NLO, ĉ(µhad) = ĉ(µpt)U(µpt ,µhad) where ĉ is defined as

ĉ(µ) =
ORGI

O(µ)
=

ZRGI
T

ZT (µ)
=

[
ḡ2(µ)

4π

]− γ0
2b0

exp
{
−
∫ ḡ(µ)

0
dg
(

γ(g)
β (g)

− γ0

b0g

)}
(4.4)

Equivalently, the total RGI renormalization constant is defined as

ZRGI
T (g0) = ĉ(µpt)U(µpt ,µhad)ZT (g0,µhad). (4.5)

5. Conclusions

On the perturbative side we have analysed cutoff effects of the SSF for various SF schemes,
and from the finite parte of the 1-loop renormalization constant we have been able to give the first
preliminary determination of the NLO anomalous dimension in SF schemes for the tensor currents,
which are the only quark bilinears with a non-trivial anomalous dimension independent from that
of quark masses. Moreover, thanks to the non-perturbative lattice computation for both N f = 0

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
2
5
0

Non-perturbative renormalization of tensor bilinears in SF schemes David Preti

100 101 102 103 1040.7

0.8

0.9

1

1.1

1.2

1.3

1.4

µ/R

O
R
G
I/
O
(µ

)

 

 

1/2
2/2
2/3

100 101 102 103 1040.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

µ/R

O
R
G
I/
O
(µ

)

 

 

1/2
2/2
2/3

Figure 4: The red dashed line is the LO running coefficient ĉ while the dashed blue line and solid black line
are NLO approximation the first with NLO-γ and NLO-β , the latter with NLO-γ and NNLO-β . Results for
N f = 0 (on the left) and N f = 2 (on the right) are provided in a single scheme (α = 0).

and N f = 2 we have computed the non-perturbative SSF in the continuum through which with 7
recursion steps the running over more than 2 orders of magnitude is computed, from an hadronic
scale up to a perturbative one. Despite the dependence of the running on the scheme and on N f ,
since the correction given to the running by the NLO anomalous dimension respect to the LO is
large, we still observe large systematics due to the matching with perturbation theory on the scale
of 2-3GeV. The same strategy, briefly explained here, is being applied to N f = 3 simulations that
will allow a more physical and precise determination of both the running and the RGI.
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