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1. Decoupling of heavy quarks

At low energies E�M heavy quarks of mass M decouple. Their effects can then be described
by an effective theory [1]. The leading order of this effective theory is a theory where the heavy
quarks are removed. Corrections to the leading order in the effective theory involve power correc-
tions (E/M)n with n≥ 2. The heavy quarks leave traces through the renormalization of the gauge
coupling and the power corrections. In this contribution we discuss the renormalization effects.
Power corrections are discussed in [2, 3].

We consider QCD with Nq quarks and denote its Lambda parameter by Λq. We will use the
MS scheme. Nl quarks are light and we set their mass to zero in the following. Nq−Nl quarks are
heavy and their renormalization group invariant (RGI) mass is M (for its definition see Section 3).
The Lagrangian of the effective theory Ldec is defined only in terms of Nl light quarks and is given
by a series in 1/M

Ldec = LQCDNl
+(1/M)2

∑
i

ωiΦi +O((Λq/M)4) . (1.1)

Here Φi are fields of dimension 6 and ωi are dimensionless parameters. At leading order the
effective theory is QCD with Nl massless quarks. QCDNl has only one free parameter, namely the
gauge coupling which we denote by gl(µ/Λl). One can specify either a value for the coupling at
some scale µ or equivalently the Lambda parameter. Matching at leading order the effective theory
with Nl quarks to the full theory with Nq quarks (see Section 3) yields a relation Λl = Λdec(M,Λq)

which determines the Lambda parameter of QCDNl as a function of the heavy quark mass M and
the Lambda parameter of QCDNq .

2. Factorisation formula

mhad denotes a hadron mass or a hadronic scale like 1/r0 [4] or 1/
√

t0 [5]. The non-perturbative
matching condition is

mhad
q = mhad

l +O((Λq/M)2) , (2.1)

where mhad
q (mhad

l ) is the hadron mass computed in QCDNq (QCDNl). Eq. (2.1) leads to the factori-
sation formula [2]

mhad
q (M)

mhad
q (0)

= Qhad
l,q ×Pl,q(M/Λq)+O((Λq/M)2) , (2.2)

where
Pl,q(M/Λq) =

Λl

Λq
(2.3)

and

Qhad
l,q =

mhad
l /Λl

mhad
q (0)/Λq

. (2.4)

The factor Pl,q, Eq. (2.3), can be computed in perturbation theory and depends on M. It is universal
in the sense that it does not depend on the hadronic scale. The factor Qhad

l,q Eq. (2.4) instead is
non-perturbative and independent of M. It depends on the hadronic scale. The independence of M
relies on the observation that mhad

l /Λl is a pure number in QCDNl . Eq. (2.2) factorises the left hand
side into a factor with a perturbative expansion and a non-perturbative, but M-independent factor.
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3. Perturbative matching

At leading order in 1/M matching imposes that observables computed in QCDNq are equal
to observables computed in QCDNl . In perturbation theory this leads to a relation between the
MS-couplings gl(µ/Λl) in QCDNl and gq(µ/Λq) in QCDNq :

g2
l (µ/Λl) = g2

q(µ/Λq)+O(g4
q(µ/Λq)) . (3.1)

We choose the renormalization scale µ = m∗ [6, 7] defined through the condition

m(m∗) = m∗ , (3.2)

where m(µ) is the running quark mass. The relation Eq. (3.1) is known up to four loops [8, 9]:

g2
l (m∗/Λl) = g2

q(m∗/Λq)C(gq(m∗/Λq))

C(g) = 1+ c2g4 + c3g6 + . . . (c1 = 0) . (3.3)

The coefficients c2 and c3 can be found in [2]. In the following we use the notation g∗= gq(m∗/Λq).
From the matching relation Eq. (3.3) we can compute the factor Pl,q in Eq. (2.3). The definition

of the Λ parameter in QCD with Nf quarks and running coupling ḡ is

Λ = µ exp(INf
g (ḡ(µ))) , (3.4)

where INf
g (ḡ) =−

∫ ḡ dx 1
βNf (x)

. The βNf function has the perturbative expansion

βNf(ḡ)
ḡ→0∼ −ḡ3{b0 + ḡ2b1 + . . .

}
; b0(Nf) =

1
(4π)2

(
11− 2

3
Nf
)
, b1(Nf) =

1
(4π)4

(
102− 38

3
Nf
)
.

(3.5)
The precise definition of INf

g (ḡ) is given by

exp(INf
g (ḡ)) =

(
b0(Nf)ḡ2)−b1(Nf)/(2b0(Nf)

2)
e−1/(2b0(Nf)ḡ2)

×exp
{
−
∫ ḡ

0
dx
[

1
βNf(x)

+
1

b0(Nf)x3 −
b1(Nf)

b0(Nf)2x

]}
. (3.6)

The factor Pl,q in Eq. (2.3) is obtained from Eq. (3.4) and Eq. (3.3):

Pl,q(M/Λq) = exp
{

INl
g (g∗

√
C(g∗))− INq

g (g∗)
}
, (3.7)

where M is the RGI mass that corresponds to m∗.
In order to evaluate Eq. (3.7) we need to determine the coupling g∗. The renormalization group

invariant quark mass M is defined from the renormalized running mass m(µ) by

M = m(µ)exp(INq
m (ḡ)) , (3.8)

where INq
m (ḡ) =−

∫ ḡ dx
τNq (x)
βNq (x)

. The τNq function has the perturbative expansion

τNq(ḡ)
ḡ→0∼ −ḡ2{d0 + ḡ2d1 + . . .

}
; d0 = 8/(4π)2 . (3.9)
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Figure 1: Perturbative decoupling of the charm quark. The factor P3,4 (left plot) and the corrections (P3,4−
P(1)

3,4 )/P(1)
3,4 for different loop orders relative to the one-loop “approximation” P(1)

3,4 = (M/Λ)2/27 (right plot).

The precise definition of INq
m (ḡ) is given by

exp(INq
m (ḡ)) = (2b0(Nq)ḡ2)−d0/(2b0(Nq)) exp

{
−
∫ ḡ

0
dx
[

τNq(x)
βNq(x)

− d0

b0(Nq)x

]}
. (3.10)

Using Eq. (3.4) and Eq. (3.8) we obtain (µ = m∗)

Λq

M
= exp

{
INq
g (g∗)− INq

m (g∗)
}
= exp

{
−
∫ g∗(M/Λq)

dx
1− τNq(x)

βNq(x)

}
. (3.11)

Inverting this relation determines the coupling g∗ as a function of M/Λq which in turn allows to
compute Pl,q through Eq. (3.7). In the following we will use the notation Λ≡ Λq.

For numerical applications we expand the integrands in Eq. (3.6) and Eq. (3.10) using Eq. (3.5)
and Eq. (3.9) and we evaluate the integrals numerically. For the n-loop expression we set bi = 0,
di−1 = 0 for i≥ n. A one-loop “approximation” is defined by setting bi = 0 , i > 0, di = 0 :

P(1)
l,q = (M/Λ)η0 , (3.12)

where η0 = 1− b0(Nq)
b0(Nl)

> 0. In Fig. 1 we show the convergence of the perturbative expression for P3,4,
i.e., for the case of decoupling of the charm quark. The one-loop “approximation” is accidentally
very close to the four-loop result. In the right plots of Fig. 1 we show the relative correction (P3,4−
P(1)

3,4 )/P(1)
3,4 where P3,4 is computed to n-loops (n = 2,3,4). The perturbative expansion appears to

behave well even for the case of the charm quark, where one would not have necessarily expected
it to be so. More details on the calculation of Pl,q will be presented in [10].

4. Non-perturbative results

In order to check the factorisation formula Eq. (2.2) and the applicability of perturbation the-
ory to compute the factor Pl,q Eq. (3.7), we study a theory with Nq = 2 heavy quarks and compare
it to Yang-Mills theory (Nl = 0). We simulate Nq = 2 O(a) improved Wilson quarks [11] with pla-
quette gauge action. The ensembles are listed in Table 1. The simulations with periodic boundary
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β a [fm] BC T ×L3 M/ΛMS kMDU τexp

5.3 0.0658(10) p 64×323 0.638(46) 1.0 0.07
p 64×323 1.308(95) 2.0 0.05
p 64×323 2.60(19) 2.0 0.04

5.5 0.0486( 7) o 120×323 0.630(46) 8.5 0.15
o 120×323 1.282(93) 8.1 0.12
p 96×483 2.45(18) 4.0 0.10

5.7 0.0341( 5) o 192×483 0.587(43) 4.0 0.28
o 192×483 1.277(94) 4.2 0.24
o 192×483 2.50(18) 8.5 0.20

Table 1: The decoupling ensembles.

conditions (p) are done with the MP-HMC algorithm [12] and those with open boundary conditions
(o) with the publicly available openQCD package [13]. We refer to [3] for further explanations.

We consider the scale mhad = 1/
√

t0 defined from the Wilson flow [5]. The factorisation
formula for its mass-dependence reads, cf. Eq. (2.2)√

t0(M)/t0(0) = 1/(P0,2Q
√

t0
0,2 )+O((Λ/M)2) (4.1)

We compute from the simulations t0(M)/a2 at three values of the heavy quark mass close to the
target values Mt/Λ = 0.59, 1.28 and 2.50. They correspond to approximately Mc/8, Mc/4 and
Mc/2 (Mc is the charm quark mass).

The RGI mass M and the ratio M/Λ are computed as explained in [3]. The data of the simu-
lations in Table 1 are corrected for small mismatches compared to the target values Mt/Λ. This is
done by fitting the β = 5.7 data to the form

t0(M)/a2 = s1 (M/Λ)α . (4.2)

We get α = −0.246(5) which is close to −2η0 = −0.242424. The corrected values t0(Mt) are
computed as

ln(t0(Mt)/a2) = ln(t0(M)/a2)+α ln(Mt/M) . (4.3)

In order to keep the O(a) improved coupling g̃2
0 = (1+bg(g2

0)Nqam)g2
0 fixed, we correct

t0(Mt)/a2 −→ (1+2×0.098Nqam) t0(Mt)/a2 , (4.4)

where m is the PCAC mass.
In order to compute the ratio in Eq. (4.1) we need the value t0(0)/a2 in the chiral limit. The

latter is known only for β = 5.3 and β = 5.5 from [14]. For our smallest lattice spacing a(β = 5.7)
we use √

t0(M)/t0(0)
∣∣∣
a(5.7)

≈
√

t0(M)/t0(Mref)
∣∣∣
a(5.7)

× lim
a→a(5.7)

√
t0(Mref)/t0(0) , (4.5)

where the reference mass is chosen to be our lightest mass Mref/Λ = 0.59. The limit in the second
factor in Eq. (4.5) is computed by a linear extrapolation of the data

√
t0(Mref)/t0(0) at β = 5.3 and

5
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Figure 2: The mass dependence of the ratio
√

t0(M)/t0(0).

5.5 as a function of a2/(8t0(Mref)). We add to the error of the extrapolation half of the difference
between the β = 5.7 and β = 5.5 values. This error is added linearly to the total error in Eq. (4.5).

The results for the ratio
√

t0(M)/t0(0) at Mt/Λ = 1.28 and 2.50 are shown by the symbols in
Fig. 2. We compare them to the factorisation formula Eq. (4.1), where the factor P0,2 is computed to
2- (blue line) and 4-loops (black line). The error on the factorization formula comes from Q

√
t0

0,2 =

[
√

t0(0)Λ]Nq=2/[
√

t0Λ]Nq=0 ' 1.19(13) and is displayed by the dashed blue lines only for the 2-

loop curve. The value of Q
√

t0
0,2 is obtained from Qr0

0,2 = [Λr0(0)]Nq=2/[Λr0]Nq=0 = 1.30(14) known
from previous works [15, 16] and [

√
t0(0)/r0(0)]Nq=2/[

√
t0/r0]Nq=0 ' 0.915 from [17]. Within

10% accuracy, the perturbative prediction for the mass dependence of
√

t0(M)/t0(0) agrees with
our simulation results at β = 5.7 for masses of about half the charm quark mass. For completeness,
in Fig. 2 the red line to the right shows the mass dependence in the chiral limit [17, 14].

5. Conclusions

Perturbation theory seems to be reliable for decoupling of heavy quarks at leading order in 1/M
even at the charm quark mass. Our data from simulations of Nq = 2 O(a) improved Wilson quarks
shown in Fig. 2 match the factorisation formula Eq. (2.2) for the mass dependence of hadronic
scales. A careful continuum limit of the data in Fig. 2 will be addressed in the near future combined
with twisted mass simulations.
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