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We study the leading hadronic contribution to γ-Z mixing, which determines the leading or-
der hadronic contribution to the running of the electroweak mixing angle θW . The required
vacuum polarization function ΠγZ is calculated from the appropriate vector correlation func-
tions in a mixed time-momentum representation. We explicitly calculate the connected and the
disconnected contributions to such vector correlators using N f = 2 dynamical flavors of non-
perturbatively O(a)-improved Wilson fermions.
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1. Introduction

The electroweak mixing angle sin2
θW is a fundamental parameter in the Standard Model of

particle physics, which is related to the unification of the electromagnetic and the weak interactions,
and is determined by the mixing of the Z boson and the photon. Quantum corrections cause it to
run with the momentum scale Q2. The hadronic contribution to the running of the Weinberg angle
is given in terms of a hadronic vacuum polarization ΠγZ with

Π
γZ
µν(Q)≡

∫
d4x eiQ·x 〈 jZ

µ

∣∣
vector(x) jγ

ν(0)
〉
= (QµQν −δµνQ2)Π

γZ(Q2) , (1.1)

with the electromagnetic photon current jγ

µ and the Z current jZ
µ . The corresponding currents are

given by [1]

jγ

µ =
2
3

uγµu− 1
3

dγµd− 1
3

sγµs+
2
3

cγµc (1.2)

jZ
µ

∣∣
vector = j3

µ

∣∣
vector− sin2

θW jγ

µ (1.3)

j3
µ

∣∣
vector =

1
4

uγµu− 1
4

dγµd− 1
4

sγµs+
1
4

cγµc . (1.4)

Since QCD is invariant under charge conjugation, only the vector part of the Z current has to be
considered.

2. The correlator for γ-Z mixing

To calculate the vacuum polarization ΠγZ , we will use the appropriate zero-momentum corre-
lator in mixed time-momentum representation,

GγZ(x0) =−
1
3 ∑

k

∫
d3x
〈

jZ
k (x)

∣∣
vector jγ

k(0)
〉

with k = 1,2,3 . (2.1)

The subtracted γZ vacuum polarization is obtained from the correlator GγZ(x0) by integrating over
the remaining time direction,

Π
γZ
R (Q2)≡Π

γZ(Q2)−Π
γZ(0) =

∞∫
0

dx0 GγZ(x0)

[
x2

0−
4

Q2 sin2
(

1
2

Qx0

)]
. (2.2)

This method has originally been developed for the calculation of the hadronic contribution to the
anomalous magnetic moment of the muon [2, 3, 4]. The hadronic contribution to the running of the
Weinberg angle is directly proportional to the subtracted vacuum polarization [5]

∆had sin2
θW (Q2) =

e2

sin2
θW

Π
γZ
R (Q2) . (2.3)

Writing down the Wick contractions for the correlator (2.1) one finds connected and disconnected
contributions as depicted in figure 1. The connected correlator for four quark flavors is given by

GγZ
con(x0) =

(
1
4
− 5

9
sin2

θW

)
G`(x0)+

(
1

12
− 1

9
sin2

θW

)
Gs(x0)+

(
1
6
− 4

9
sin2

θW

)
Gc(x0) . (2.4)

The corresponding single flavor correlators G f (x0) can be expressed as

G f (x0)≡
1
3 ∑

k
∑

#»x

〈
Tr
[
D−1

f (x,0) γk D−1
f (0,x) γk

]〉
G

(2.5)

in terms of quark propagators. The disconnected Wick contractions will be discussed in section 4.
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Figure 1: The connected and the disconnected contribution to γ-Z mixing.

We also tested a different strategy to only calculate a correlation function of the form

G3γ(x0) =−
1
3 ∑

k

∫
d3x
〈(

j3
k(x)

∣∣
vector−

9
20

jγ

k(x)
)

jγ

k(0)
〉

(2.6)

on the lattice and take the remaining required vacuum polarization ∝ Πγγ from dispersion relation
and phenomenology. The advantage of this approach is that the correlation function (2.6) does
not include a light connected piece. However, in this study we resort to calculate the complete
correlator (2.1) using lattice QCD.

3. Results for the connected contribution

For the analysis of the connected contribution we follow the steps of [6], where the vector
correlator in time momentum representation has been used to determine the leading hadronic con-
tribution to the anomalous magnetic moment of the muon.

G
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Z
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Figure 2: The plot on the left-hand side shows the result for the correlator GγZ
con(x0) plotted against t for the

E5 ensemble (cf. table 1 for details of the ensembles). The green curve indicates a fit to our data with a fit
range of t ∈ [15,20]. The connected hadronic contribution to the running of the Weinberg angle is plotted
against the momentum Q2 for all three ensembles on the right.

The connected correlator GγZ
con(x0) for the E5 ensemble (cf. table 1) is plotted on the left-hand

side of figure 2 against the source-sink separation t. The connected correlator has been calculated
with a conserved vector current at the sink and a local current at the source. The required multiplica-
tive renormalization Zv is taken from [7]. To obtain the subtracted vacuum polarization Π

γZ
R (Q2),

one has to integrate the correlator over Euclidean time. For this purpose we interpolate the corre-
lator with cubic splines for t ≤ 15 as indicated by the black curve in figure 2. For large Euclidean
times t > 15 we fit the correlator for every quark flavor separately to a function ∝ exp(−m f t)
(shown by the green line in figure 2) and use the result of this fit to integrate up to t→∞. From the
subtracted vacuum polarization we obtain the hadronic contribution to the running of the Weinberg
angle ∆had sin2

θW (Q2) according to equation (2.3). Here we use the result for the fine structure con-
stant α−1 from [8] and the tree-level Weinberg angle in the MS scheme sin2

θW (0) = 0.23871(9)
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β a[fm] lattice mπ [MeV] mπL Label Ncnfg

5.3 0.063 64×323 455 4.7 E5 1000
5.3 0.063 96×483 325 5.0 F6 300
5.3 0.063 96×483 280 4.3 F7 250

Table 1: Overview of the CLS ensembles that have been used for the calculation of the hadronic contribution
to the running of the Weinberg angle.

from [9]. Our results for ∆had sin2
θW (Q2) are shown in the right-hand side of figure 2 for the three

gauge ensembles listed in table 1. We observe a clear trend in ∆had sin2
θW (Q2) as the pion mass is

lowered.

4. The disconnected contribution

As already discussed, the correlator GγZ(x0) receives a disconnected contribution. For three
quark flavors the disconnected Wick contractions are given by

GγZ
disc(x0)≡−

1
3 ∑

k

∫
d3x
〈

jZ
k (x)

∣∣
vector jγ

k(0)
〉

disc = sin2
θW

1
9

G(`+As),(`−s)
disc (x0) . (4.1)

The disconnected correlator G(`+As),(`−s)
disc is given as

G(`+As),(`−s)
disc (x0− y0) =

1
3 ∑

k

1
L3

〈(
∑
#»x

Tr
[
γk D−1

` (x,x)+Aγk D−1
s (x,x)

])
×
(
∑
#»y

Tr
[
γk D−1

` (y,y)− γk D−1
s (y,y)

])〉 (4.2)

in terms of quark propagators with A = 3
4sin2

θW
− 1. In the second row of equation (4.2) one can

see that at the source y only the difference of light and strange propagators is needed. Since we
calculated the required disconnected quark loops with stochastic sources, we can calculate both
- light and strange quark loops - with the same sources, such that the stochastic noise is largely
canceled at the source y. This noise cancellation has already been used in our calculation of the
disconnected contribution to aµ [10], where one obtains a cancellation at the source and the sink.

G
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d
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c
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Figure 3: The disconnected correlator is plotted on the left-hand side. The right-hand side shows the
connected correlator (red) and the total correlator (yellow). The black line indicates the level of the error on
the disconnected contribution.
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The left-hand side of figure 3 shows the disconnected correlator G(`+As),(`−s)
disc . The discon-

nected quark loops have been calculated with three stochastic sources per timeslice and a gener-
alized hopping parameter expansion [11]. As discussed above, light and strange propagators are
estimated with the same stochastic sources. We find that the disconnected correlator is consistent
with zero within the statistical errors. However, we have to add the disconnected contribution to
the connected one to obtain the total correlator GγZ . This is shown by the yellow points in the
right-hand side of figure 3. The black line indicates the level of the error on the disconnected
contribution. For t & 16 the total correlator is dominated by the noise from the disconnected con-
tribution.

5. The correlator for large Euclidean times

Since we find the disconnected correlator to be consistent with zero within statistical errors,
we have to resort to giving an upper limit for the maximum possible disconnected contribution to
∆had sin2

θW (Q2). For this purpose we investigate the behavior of the correlator for large Euclidean
times using the same arguments as in [3, 10] for for the hadronic vacuum polarization contribution
aHVP

µ .
Since the lowest possible isovector state consists of two pions and the lowest isoscalar state

of three pions, the isovector channel opens at energies of 2mπ whereas the isoscalar channel opens
only at 3mπ . Thus one expects for large Euclidean times that the correlator is dominated by the
isovector part, which is given by

GγZ(t)−→
(

1
2
− sin2

θW

)
Gρρ(t) for t→ ∞ (5.1)

with the ρ-correlator Gρρ ≡ 1
2 G`. On the other hand, we can rewrite the expression for the total

correlator GγZ(t) (neglecting charm contributions) by dividing by the ρ-correlator and rearranging
the terms,

1
9

sin2
θW

G(`+As),(`−s)
disc (t)

Gρρ(t)
=

GγZ(t)−
(1

2 − sin2
θW
)

Gρρ(t)
Gρρ(t)

+
1
9

sin2
θW −

(
1
6
− 2

9
sin2

θW

)
Gs(t)
G`(t)

.

(5.2)
For large Euclidean times, the first term on the right-hand side of (5.2) vanishes due to equation
(5.1). Additionally, the term ∝ Gs/G` is exponentially suppressed and vanishes for t→ ∞. Hence,
we find

G(`+As),(`−s)
disc (t)−→ 1

2
G`(t) = Gρρ(t) for t→ ∞ (5.3)

for the large time behavior of the disconnected correlator.
Figure 4 shows the ratio of the disconnected correlator and the ρ-correlator. This ratio is

expected to be 1 for t → ∞ according to equation (5.3). The green line on the left-hand side
indicates the asymptotic value. Clearly, the ratio can be distinguished from the asymptotic value 1
up to t ≈ 8a. We are interested in the scenario where the disconnected diagram contributes as much
as possible while still agreeing with our data. If we assume that the ratio rises monotonically from
≈ 0 to its asymptotic value, the maximum possible contribution is shown by the blue curve on the
right-hand side of figure 4.
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Figure 4: The ratio of the disconnected and the ρ-correlator. The green line one the left-hand side shows
the asymptotic value. The blue curve on the right is our estimate for the maximum possible disconnected
contribution.

6. The γZ vacuum polarization with disconnected estimate

To obtain an upper limit for the contribution of the disconnected diagram to the running of
the Weinberg angle, we calculate the γZ vacuum polarization once without the disconnected con-
tribution and once with an estimate for the disconnected contribution that follows the blue curve in
figure 4. Both results are shown on the left-hand side of figure 5.
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Figure 5: The γZ vacuum polarization once without disconnected contribution (yellow) and once with our
estimate for the disconnected contribution (red). The green points on the right show the relative difference
of these two curves.

We find that Π
γZ
R (Q2) including the disconnected estimate is larger than the result from con-

nected contributions only. Thus we can state, that the disconnected contribution to Π
γZ
R (Q2) is

positive. However, one has to keep in mind that our estimate only gives a conservative upper limit
and the disconnected contribution might be much smaller. The right hand side of figure 5 shows
the relative difference between the two curves at the left. One can see that at e.g. Q2 = 4 GeV2 the
upper limit for the disconnected contribution is ≈ 4% of the connected one. This 4% can be used
as a systematic error that arises when the disconnected contribution is neglected.

Figure 6 shows the results for ∆had sin2
θW (Q2) at 4 GeV2 for three different pion masses (cf.

table 1). Red points show the results from the connected contribution only. The asymmetric green
error bar indicates the maximum possible disconnected contribution. On can see that the systematic
error from the disconnected diagram is much larger than the statistical error on the connected
result. Thus, our results for ∆had sin2

θW (Q2) can only be improved with a better estimate of the
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disconnected contribution. The blue point in figure 6 is the result of a recent lattice calculation by
Burger et al.[12], where disconnected contributions have been neglected.
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Figure 6: Our results for ∆had sin2
θW (Q2) plotted against the pion mass. The blue point shows the result

from Burger et al. [12].
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