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1. Introduction

Current correlators provide a rich source of information on the QCD vacuum. Correlators in
the sufficiently short-distance region (< 0.1 fm) are well predicted by perturbation theory, which
is currently available to four-loop order [1], while the non-perturbative dynamics dominates in
the region of long distance (> 1 fm), as systematically understood by chiral perturbation theory.
Dynamics in the middle range is, on the other hand, quite nontrivial, and lattice calculation is
needed to obtain quantitative predictions.

The operator product expansion (OPE) [2] accommodates some non-perturbative effects and
is used to analyze experimental data such as the hadronic τ decays. Since the number of operators
to be included rapidly increases as one considers longer distance physics the range of distances
suitable for OPE is limited. In this work, we test the applicability of OPE for current correlators
in the region 0.1 fm < x < 0.5 fm by comparing current correlators in the continuum theory and
lattice calculations.

As a by-product, we can determine the renormalization constants of quark bilinear operators
following the analysis of [3–5], in which the renormalization condition is imposed on the correlator
at a certain distance in the coordinate space. Unlike the RI/MOM scheme [6], this method enables
us to renormalize composite operators in a fully gauge invariant manner and to use the perturbative
matching factor available to the four-loop level. Like RI/MOM, the window problem remains, i.e.
we need to use the correlators in the region satisfying a ≪ x ≪ Λ−1

QCD to avoid discretization effects
on the lattice and non-perturbative effects on the continuum side. We investigate these effects and
introduce various techniques to reduce them.

In this report, we present the status of these analyses. We employ 2+1 flavor Möbius domain
wall fermions with stout link smearing and the Symanzik improved gauge action. We work on
323 ×64 lattices at a−1 = 2.45 GeV, 483 ×96 lattices at a−1 = 3.61 GeV and a 643 ×128 lattice at
a−1 = 4.50 GeV, all of which have matched physical volume and pion masses of Mπ = 300 ∼ 500
MeV. Calculation of masses and decay constants for the light mesons and the heavy-light mesons
on these ensembles is reported in [7].

2. Current correlators

We calculate correlation functions of light quark bilinear operators in the coordinate space,

ΠS(x) = ⟨S(x)S(0)†⟩, ΠP(x) = ⟨P(x)P(0)†⟩,
ΠV,µν(x) = ⟨Vµ(x)Vν(0)†⟩, ΠA,µν(x) = ⟨Aµ(x)Aν(0)†⟩,

(2.1)

where S and P are the scalar and pseudoscalar densities, while Vµ and Aµ are the vector and axial-
vector currents. The flavor indices are omitted for simplicity, but they are understood as isospin
triplet operators of light quarks. We also use the vector and axial-vector correlators after taking a
trace of the Lorentz diagonal components,

ΠV/A(x) = ∑
µ

ΠV/A,µµ(x). (2.2)

Figure 1 shows the pseudoscalar correlator calculated non-perturbatively on the lattice (circle)
and that in the free system both in the continuum (dashed curve) and lattice theory (diamond). Due
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Figure 1: The pseudoscalar correlators measured on the lattice before (circle) and after (square) subtracting
discretization effects in the tree level. The correlators in the free system calculated in the continuum theory
(dashed curve) and lattice (diamond) are also plotted. This data are calculated on the 483 × 96 lattice at
β = 4.35 and input mass amq = 0.0042,ams = 0.0180.

to the discretization effect, the non-perturbative data are not on a smooth line. However, the similar
effect is already seen in the free correlator, which implies that the difference of the free theory
between the lattice and the continuum describes the discretization effect in the interacting system
to a good approximation. In fact, by applying a subtraction,

Πlat
Γ → Πlat

Γ −
(
Πlat, free

Γ −Πfree, cont
Γ

)
, (2.3)

we obtain smoother correlator as shown in Fig. 1 by squares.
Next, we examine the convergence of the continuum perturbation theory to identify the valid

region of x. It is sufficient to investigate the scalar and vector channels because these channels
coincide with the pseudoscalar and axial-vector channels, respectively, in the massless limit. Per-
turbative coefficients of correlators are calculated to four-loop in [1]. The beta function [8] and the
mass anomalous dimension [9, 10] are also known up to four-loop level. However, if we naïvely
use these results, the ratio shows poor convergence as shown in the left panel of Fig. 2. In this plot,
reasonable convergence is found only in the region x . 0.1 fm, which is in the same order as our
lattice spacing a = 0.04 ∼ 0.08 fm. We can improve the convergence of the perturbative expansion
by choosing an appropriate renormalization scale µ∗ instead of using µ̃ ≃ 1.12/x suggested in [1].
After some investigation of the convergence property and the size of systematic errors, we found
that µ∗ = 2.86/x for the scalar and µ∗ = 5.47/x for the vector are optimal choices. As shown in
the right panel of Fig. 2, the convergence is much better and the difference among 2-, 3- and 4-loop
is hardly visible for x < 0.5 fm.

The lattice correlators of the scalar and pseudoscalar chnnels are also plotted on the right panel
of Fig. 2. These correlators are multiplied by ZMS

S (2 GeV)2, the renormalization factor of the scalar
density determined in Sec. 4. Lattice result and the continuum perturbation theory agree very well
in x . 0.25 fm. Significant difference found in x > 0.25 fm is due to non-perturbative effects as
discussed in the following sections.
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Figure 2: The scalar correlator in the continuum perturbation theory calculated with the coupling constant
αs(µ∗)/π renormalized at µ∗ = 1/x (left) and 2.86/x (right) in the MS scheme. The correlators are renor-
malized at 2 GeV in the MS scheme with n f = 3. In the right panel, we also plot lattice correlators of the
scalar and pseudoscalar channles measured on the same ensemble as Fig. 1.

3. Non-perturbative effect on current correlators

We discuss non-perturbative effects on the vector and axial-vector correlators. Using the
PCAC relation, one can relate V/A correlators to the chiral condensate [11, 12]. When the valence
masses are degenerate, the relation is written as

Σmq(x)≡−
π2

(
ZMS

V

)2

2mq
x2xν∂µ

(
ΠA,µν(x)−ΠV,µν(x)

)
= ⟨q̄q⟩+O(mq). (3.1)

Here, ZMS
V is to renormalize the vector and axial-vector currents constructed by the local operators

on the lattice. The subtraction of ∂µΠV,µν , which vanishes in the continuum theory, is to cancel the
discretization effects. Figure 3 shows the lattice results of Σmq(x) renormalized by ZMS

S (2 GeV) for
three input masses, corresponding to Mπ ∼ 300, 400, and 500 MeV. The lattice data would be flat
in the chiral limit and coincide with the gray band, which is the FLAG average [13] for n f = 2+1,
(⟨q̄q⟩MS(2 GeV))1/3 =−271(15) MeV.

In contrast, the prediction for the scalar and pseudoscalar correlators from OPE in literature
fails to reproduce the lattice data. It becomes prominent when one compares the difference of these
channels, i.e. the lattice result shows larger difference than the OPE prediction. Such inconsistency
has been known [14–17], and a possible description by the instanton-induced ’t Hooft interaction
is suggested.

4. Renormalization of quark currents

In this section, we report the renormalization factors of quark currents using correlators. On
each ensemble, the renormalization condition is applied by(

Z̃MS
Γ

)2
Πlat

Γ (x) = ΠMS
Γ (x), (4.1)
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Figure 3: The cubic root of Σmq renormalized by ZMS
S (2 GeV). Input volume, β , and ms are same as Fig. 1

but result of three valence masses are shown. The solid line and the gray band stand for the FLAG average
of the chiral condensate at 2 GeV in the MS shcme.

at a certain distance x. The data of Z̃MS
Γ may show some x-dependence reflecting the discretization

effects and non-perturbative effects contained in Πlat
Γ . As Fig. 4 shows, both the x-dependence

and mass-dependence of Z̃MS
V/A are found to be significant. We take account of the non-perturbative

effects using the OPE. The vector and axial-vector correlators are expressed as a linear combination
of vacuum expectation values of local operators,

ΠV/A(x) =
c0

x6 +
cV/A

4,q̄q mq⟨q̄q⟩+ cV/A
4,G ⟨GG⟩

x2 + · · · . (4.2)

Because of the relation cV
4,q̄q/cA

4,q̄q =−3/5 [2,12], the combination 1
8(5ΠV+3ΠA) cancels the bulk

of the contribution from the chiral condensate ⟨q̄q⟩. This combination Z̃MS
5V+3A is shown by crosses,

triangles, and pentagons for different quark masses in Fig. 4, where the dependences on x and on
valence masses are dramatically reduced. Although there is no mass dependence remains for the
operators of dimension four, the mass dependence of the data is still seen at x > 0.4 fm, which
may be attributed to the contributions from higher dimensional operators, including the four-quark
condensate ⟨q̄q̄qq⟩ and m2

q⟨GG⟩.
Figure 5 shows Z̃MS

(5V+3A)/8(x) at each β . The position where Z̃MS
(5V+3A) starts deviating from a

constant toward short-distance moves as the lattice spacing, indicating the discretization effect. The
most significant discretization effect is of O(a2) which appears as (a/x)2. Since we have already
subtracted the discretization effects at the tree level, the remaining effect is αs(a/x)2.

Taking account of these non-perturbative effects and discretization effects, we determine the
renormalization factor ZMS

V in the massless limit by a simultaneous fit of all ensembles using the fit
function

Z̃MS
(5V+3A)/8(a;x) = ZMS

V (β )+C−2αs(a)(a/x)2 +C4,Gx4 +(C6,q +C6,Gm2
q)x

6. (4.3)
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Figure 4: Z̃MS
V/A with the dependence on x, calculated by (4.1) (square, circle, diamond) and by taking the

combination 1
8 (5ΠV +3ΠA) (cross, triangle, pentagon). The results of same ensembles as Fig. 3 are shown.
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Figure 5: Z̃MS
(5V+3A)/8(x) for each β at similar pion masses Mπ ≃ 300 MeV.

Our results are ZMS
V = 0.951(4),0.956(3),0.961(3) at β = 4.17,4.35,4.47, respectively.

Determination of ZS is more complicated due to the possible instanton-induced effect. Since
instantons affect the scalar and pseudoscalar correlators to the opposite direction with the same
magnitude, the naïve average 1

2(ΠS +ΠP) is independent of such an effect. According to the OPE,
the average contains the contribution of the chiral condensate, which may be cancelled by the
difference between the vector and axial-vector correlators. Taking a combination of ΠS +ΠP and
ΠV −ΠA to cancel these known x-dependence, we are able to fit the Z-factor using the fit form
similar to (4.3). We obtain ZMS

S (2 GeV) = 1.024(15),0.922(11),0.880(7) at β = 4.17,4.35,4.47,
respectively.
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5. Summary

The main purpose of this work is to understand how precisely the continuum theory predicts
the short-distance behavior of current correlators by comparing lattice results with the continuum
theories. The vector and axial-vector correlators agree with the OPE in the region x . 0.5 fm, while
the scalar and pseudoscalar channels need more study to understand.

Controlling non-perturbative effects and discretization effects, we determine renormalization
factors of quark currents using correlators. This procedure enables us to renormalize in a gauge
invariant manner and to perform the perturbative matching to the four-loop level.
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