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1. Introduction

The charm quark mass mc and the strong coupling constant αs are fundamental parameters in
the Standard Model. Their precise determination is important for the test of the Standard Model.
One example is related to Higgs partial widths, which has significant dependence on αs and mc.
For the determination of the partial widths better than 1%, one needs mc and αs also better than
1% [1].

We extract the charm quark mass and the strong coupling constant using the moment method in
lattice QCD with the Mobius domain-wall fermion. We calculate the charmonium current-current
correlator on the lattice and construct its time moments, which correspond to derivatives of the
vacuum polarization functions. The moments can be related to the R-ratio R(e+e− → qq̄+X)

by the dispertion relation, and one can obtain the charm quark mass using experimental data and
perturbation theory. Instead of the experimental data, we use the lattice data to extract the charm
quark mass. The idea was initiated by the HPQCD collaboration, and a precision better than 1%
has been reported [2–4].

2. Moment method

We calculate the charmonium pseudoscalar correlator summed over spatial position x

G(t) = a6 ∑
x
(ambare

quark)
2⟨0| j5(x, t) j5(0,0)|0⟩, (2.1)

with j5 = ψ̄cγ5ψc. The moment of the pseudoscalor current-current correlator on the lattice is
defined by

Gn = ∑
t

( t
a

)n
G(t), (2.2)

with n is an even integer larger than 4. On the lattice t/a takes a value in {0,1,2, ..., T
2a −1,0,− T

2a +

1, ...,−2,−1}, where T is the size of the lattice in the time direction. Because of the symmetry
G(t) = G(−t) odd n moments vanish.

We follow the method introduced in [2, 3]. To reduce the discretization effect, we define the
reduced moment Rn using the lowest order moment G(0)

n evaluated for a free correlator:

Rn =
amlat

ηc

2amlat
bare, c

(
Gn

G(0)
n

) 1
n−4

(2.3)

where mlat
ηc

is the ηc mass on each lattice ensemble, and mlat
bare, c is the bare charm quark mass on

that ensemble.
The moments in the continuum perturbation theory are similarly defined by the correlators of

j5(x). First, we consider the pseudoscalor vacuum polarization function Π(q2),

q2Π(q2) = i
∫

dxeiqx⟨0|T j5(x) j5(0)|0⟩. (2.4)

By a Taylor expansion, it may be expressed as

Π(q2) =
3

16π2 Q2
q

∞

∑
k=−1

Ckzk, (2.5)

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
2
6
7

Charmonium current-current correlators Katsumasa Nakayama

where z = (q/2mc)
2, Qq is the quark charge (+2/3 or -1/3), and Ck are coefficients calculated

perturbatively up to O(α3
s ) [3, 5–7]. They are written as

Ck = C(0)
k +

αs(µ)
π

(
C(10)

k +C(11)
k lm

)
+

(
αs(µ)

π

)2(
C(20)

k +C(21)
k lm +C(22)

k l2
m

)
+

(
αs(µ)

π

)3(
C(30)

k +C(31)
k lm +C(32)

k l2
m +C(33)

k l3
m

)
+...

with lm = log(m2
c(µ)/µ2).

Since the t multiplication on the lattice corresponds to a differentiation by q2 in the momentum
space, the moment may be written as

g2n =

(
1
n!

)(
− ∂

∂ z

)n

(zΠ(q2))|q2=0, (2.6)

and one can calculate the reduced moment in the continuum theory as r2k = (g2k/g(0)2k )
1/(2k−4) =

(Ck−1/C(0)
k−1)

1/(2k−4), where C(0)
k−1 are the coefficients at the lowest order. Requiring the equality

between lattice and continuum, we arrive at

mc(µ) =
mexp

ηc

2
rn(αMS,mc)

Rn
, (2.7)

where mc(µ) is the MS charm quark mass defined at a renormalization scale µ . rn appearing on the
right hand side is an implicit function of mc(µ) and αs(µ), and the equation should be understood
as a condition to be satisfied by the parameters mc(µ) and αs(µ). Using the equation for different
n’s at the same time, we may determine these parameters. We may also use a ratio of the reduced
moments,

Rn

Rn+2
=

rn

rn+2
, (2.8)

for which the truncation error of the perturbative expansion is different from individual rn.
The moment method has a range of validity for the scale µ since we concurrently use the

lattice and perturbation theory. That is, there is a upper bound on n from ΛQCD for perturbativation
theory to be valid. On the other hand, the lower bound comes from the lattice cutoff. Figure 1
demonstrate the range of t that Rn recieves dominant contribution. The integrand of (2.2) is plotted
as a function of t, for n=4, 8, and 12. The peak of the integrand is estimated as tpeak ∼ n/mlat

ηc
, and

the valid range π/a ≫ π/tpeak ≫ ΛQCD, is interpreted as

mlat
ηc

a ≪ n ≪ π
mlat

ηc

ΛQCD
. (2.9)

As one can see in Fig. 1, R4 receives a large contribution from small t (t = 1,2), which may have
relatively large discretization effect. As the power n becomes larger, the moment receives more
contributions from large t region. Assuming ΛQCD ∼ 300 MeV, the constraint (2.9) corresponds to
n ≪ 30. We therefore use n = 6,8,10 in this analysis.
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Figure 1: tnG(t) on the lattice size 643 × 128 at a = 0.044 fm. The peak is normalized to 1. The data for
n = 4, 8, and 12 are shown.

3. Analysis and error estimation

Our lattice QCD simulations are carried out with n f = 2+1 Moebius domain wall fermion at
lattice spacings a = 0.083, 0.055, and 0.044 fm. The spatial size of the lattice L = 32, 48, and 64
depending on a and the temporal size T is twice the spatial size L. For the details of the lattice
ensembles, see [8]. On each ensemble, we calculate the charmonium correlator at three different
bare charm quark masses.

We calculate the reduced moment Rn on each ensemble, interpolate them to the physical charm
quark mass, and then extrapolate to the continuum and the chiral limit of light quarks. First we
interpolate in mc to the physical point by tuning until the spin average mass (mηc +3mJ/ψ)/4
reproduces the experimental value obtained from the PDG number (mexp

ηc = 2.9836(7) GeV and
mexp

J/ψ = 3.0969 GeV) so (mηc +3mJ/ψ)
exp/4 = 3.06869(2) GeV. We then extrapolate Rn assuming

the form

Rn = Rn(0)
(
1+ c1(amc)

2)×(1+ f1
mu +md +ms

mc

)
, (3.1)

with free parameters Rn(0), c1, and f1. The error of O(a2) is eliminated by an extrapolation with
this form, while the effect of O(a4) still needs to be estimated. We take the value of c1 from this fit
as a typical size of the coefficients also at higher orders, and artificially add or subtract c1(amc)

4 to
the term representing the discretization effect (1+ c1(amc)

2). Namely, we modify the fit form as

Rn = R(±)
n (0)

(
1+ c(±)

1 (amc)
2 ± c(0)1 (amc)

4
)
×
(

1+ f (±)
1

mu +md +ms

mc

)
, (3.2)

with c(0)1 fixed from (3.1) while other parameters are free. We repeat the fitting and take the largest
variation of Rn(0)(±) as an estimate of the remaining discretization error.

The quark mass dependence, which is assumed to be linear in mu +md +ms, turned out to
be flat ( f1 ∼ 0), and we do not consider its higher order effects. We can also neglect the effect of
small non-zero values of mu +md +ms at the physical point. Table 1 is the results for R(0)

n . We use
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(Stat.)(a)(O(a4))(Vol.)

R(0)
6 1.520(2)(1)(8)(5)

R(0)
8 1.368(1)(1)(4)(2)

R(0)
10 1.302(1)(0)(3)(1)

R(0)
12 1.262(1)(0)(3)(0)

R(0)
14 1.236(1)(0)(3)(0)

(Stat.)(a)(O(a4))(Vol.)

R(0)
6 /R(0)

8 1.1113(6)(3)(28)(2)

R(0)
8 /R(0)

10 1.0510(2)(1)(5)(1)

R(0)
10 /R(0)

12 1.0313(1)(1)(0)(1)

Table 1: Reduced moment in the continuum limit (left) and their ratio (right). The error from statistical, the
input of the lattice spacing, O(a4), and finite volume effect are also listed.

Figure 2: µ dependence in n = 8 r8/mc(µ)

the standard χ2 fitting and the statistical error is estimated through the covariance matrix. Finite
volume error is estimated by inspecting the difference between the results at L=32 and at 48 on the
coarsest lattice.

For the value of mexp
ηc in (2.7) we input the experimental value 2.9836(7) GeV after subtracting

the corrections due to disconnected and electromagnetic effects. Disconected effect is estimated as
mηc −m(no disconect)

ηc =−2.4(8) MeV [9], while the electromagnetic contribution is mηc −m(no EM)
ηc =

−2.6(1.3) MeV in [10]. The hyperfine splitting ∆J/ψ−ηc = mJ/ψ −mηc is directly calculated on the
lattice. Our lattice data fail to obtain the hyperfine splitting consistent with the experimental data
113.3 MeV at finite lattice spacings. After extrapolating to the continuum limit we obtain 115.7(17)
MeV. We estimate the error due to higher order effect of O(a4) by adopting different extrapolations,
and the associated error for mηc is estimated as 2.3 MeV. Including all the errors in the ηc meson
mass, the input is mexp

ηc = 2983.6(0.7)+2.4(0.8)Disc.+2.6(1.3)EM ± (2.3)HF MeV.

Perturbative calculation is available up to O(α3
s ), and remaining error is of O(α4

s ). We estimate
the truncation error from residual µ dependence of rn(µ)/mc(µ). We take µ = 3 GeV as a central
value and consider the variation in the range ±1 GeV for the estimate of the truncation error. Figure
2 shows an example for n = 8. The µ dependence of rn(µ) is almost canceled by the dependence of
mc(µ), and the remnant µ dependence is tiny but non-zero which we take as perturbative truncation
error. Such cancellation also occurs for the ratio of the reduced moment.
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Figure 3: The solution of R6/R8, R8, R10 on the {mc, αs} plane. The grey band expresses the statistical
error.

Next we consider the non-perturbative correction on the perturbative side. The perturbative
expansion is associated with the non-perturbative correction represented by power corrections in
the operator product expansion. Namely, we replace Ck−1 in (2.5) by

Ck−1 →Ck−1 +
16π2

3Q2
q

⟨(αs/π)GµνGµν⟩
(2mc)4 Ak, (3.3)

where the constants Ak are given in [11]. The expectation value ⟨(αs/π)GµνGµν⟩, is called the
gluon condensate, and its precise value is not known. We therefore keep it a free parameter and
determine by a fit of Rn.

Over all, we extract the charm quark mass mc(µ), the strong coupling constant αs(µ), and
the gluon condensation ⟨(αs/π)G2⟩/m4

c , simultaneously. Figure 3 shows the constraint from rn on
mc(µ) and αs(µ) for n =6, 8, and 10 as well as that from the ratio R6/R8. We observe that the
bands from each rn cross at the same point in the (mc, αs) plane after adjusting ⟨(αs/π)GµνGµν⟩
appropriately.

We use three constraints at once to obtain the results for mc(µ), αs(µ), and ⟨(αs/π)G2⟩/m4
c .

The best choice among the different possibilities turned out to be a combination of R6/R8,R8, and
R10. The result is

mc(µ = 3 GeV) = 0.9948(26)(16)(64) GeV, (3.4)

αMS(µ = 3 GeV) = 0.2514(74)(11)(58) GeV, (3.5)

and ⟨(αs/π)GµνGµν⟩/m4
c = 0.0007(14)(0)(1), where the errors represent the perturbative trun-

cation error, statistical errors, and other systematic errors, respectively. Statistical errors contain
those of the configurations and from the error of the lattice spacing. Systematic uncertainty is
from finite volume effect, O(a4) error, disconnected and electromagnetic contributions, hyperfine
splitting, and input experimental error in the mexp

ηc . Each contribution is summarized in Table 2, for
mc(3 GeV) and αs(3 GeV). These results may be converted to those at the scale µ = mc, for in-
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R6/R8,R8, and R10 mc(3 GeV) αs(3 GeV)

Perturbation theory 0.3 2.9
Statistical erorrs 0.1 0.4
Lattice spacings 0.1 0.2

O(a4) 0.5 1.9
Finite volume effect 0.3 1.3

Input mexp
ηc 0.0 0.0

Disconnected 0.0 0.0
Electromagnetic 0.1 0.0

ηc − J/ψ hyperfine splitting 0.1 0.0
Total 0.7% 3.8%

Table 2: Each error contribution to the result from R6/R8,R8, and R10.

stance. We obtain the mc(µ = mc) = 1.2769(91) GeV. Also, for αMS(µ) at the weak scale µ = MZ ,
our result is αMS(µ = MZ) = 0.1174(20).
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