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1. Goal of the project

In 1993 Di Renzo et al. [1] introduced Numerical Stochastic Perturbation Theory (NSPT) as an

alternative to diagrammatic Lattice Perturbation Theory (LPT). Since then its range of applicability

increased; in particular at the Lattice 2013 conference the Schrödinger functional formalism [2] and

the Wilson flow [3] has been introduced. The current project is the implementation of the clover

fermion regularization in NSPT.

As it is well known, in presence of Wilson fermions the lattice QCD action suffers from O(a)

artifacts that can be removed provided one add the so called “clover term” in the action:

O = a5 ∑
x

cSW ψ̄(x)
i

4
σµν F̂µν(x)ψ(x).

In the former equation F̂µν = 1
8

{

Q̂µν(x)− Q̂νµ(x)
}

is a suitable lattice representation of the gluon

field tensor, Q̂µν(x) the “clover” product of link variables

Q̂µν(x) =

µ

ν

x

and cSW = cSW (g0) the Sheikholeslami and Wholert coefficient.

In perturbation theory both the links and cSW (g0) have to be expanded in series of the coupling:

this gives rise to a growing number of diagrams, usually preventing ordinary diagrammatic to reach

high orders. By making use of NSPT we are able to overcome this limitation.

In the following we will briefly describe NSPT, then discuss two approaches to the determination

of cSW to high orders and finally present a preliminary measurement of the quark critical mass .

2. The NSPT approach

A detailed description of the NSPT formulation can be find in [4]. In brief, the main idea is to

add a new degree of freedom, known as stochastic time, to the gauge field and let the system evolve

evolve according the Langevin dynamic:

U(x)→U(x, t)

∂tU(x, t) = {−i∇S[U(x, t)]− iη(x, t)}U(x, t),

where η(x, t) is a noise satisfying:

〈η(x, t)〉= 0 〈η(x, t)η(x′, t ′)〉= 2δ (x− x′)δ (t − t ′)

The gauge fields are then expanded in a power series, to be eventually truncated at the desired order.

By trading the differential equations for integral ones one would obtain a diagrammatic approach;

in NSPT one uses the lattice regularization of the theory and performs the integration numerically
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on a computer.

As usual fermionic contributions can be included by adding the term

Seff =−TrlnM[U ]

to the action. This term produces a contribution

∇Seff =−Tr
[

(∇M[U ])M[U ]−1
]

in the Langevin equation. In order to evaluate this contribution, we observe that

• the trace can be stochastically evaluated inserting a gaussian source ξ s.t. 〈ξiξ j〉ξ = δi j

Tr
[

(∇M)M−1
]

= Re〈ξ † (∇M)M−1ξ 〉ξ

• the Lie derivative ∇M can be analytically computed.

We are then left with the computation of M−1. Since the perturbative expansion of U induces an

expansion of the Dirac operator

M[U ] = ∑
n=0

β−n/2M[U ](n)

the inversion ψ = M[U ]−1ξ turns into the inversion of a series, that can be iteratively constructed:

• compute ψ(0) = M(0)−1
ξ

• order by order construct ψ(n) = M(0)−1 [

∑n−1
m=0 M(n−m)ψ(m)

]

.

According to this scheme the only inversion required is M(0)−1
, but this can usually be computed

analytically. As an example in the case of Wilson fermions the inversion is trivial when performed

in momentum space.

In this sense clover fermions are a lucky case: the clover term vanishes at tree-level, and the

inversion is the same that one would perform with unimproved Wilson fermions.

3. Status of the computation

The final goal of the project is the computation of cSW to higher order. To this end we are

considering two approaches: via either the improvement of the quark-gluon vertex or the PCAC

mass. We will now briefly discuss the two approaches.

3.1 quark-gluon vertex improvement

The on-shell quark-gluon vertex suffers from order a effects, that can be removed by introduc-

ing cSW . At tree-level the massless quark-gluon vertex reads

Λ
a,(0)
µ (p,q) =−gT a

[

iγµ + r

(

pµa+qµa

2

)]

−g
rcSW

2
T a ∑

ν

σµν(p−q)ν .
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Sandwiching Λa
µ(p,q)i j

αβ by the Dirac spinor and making use of the Gordon identity one finds that

ū(q)Λ
a,(0)
µ (p,q)u(p) =−gT aū(q)

[

iγµ +(1− c
(0)
SW )

a

2
(p+q)µ

]

u(p)+O(a2). (3.1)

i.e. setting c
(0)
SW = 1 cancels O(a) effects at tree-leevel.

This approach can be used to determine higher orders of cSW by imposing O(a) effects to vanish.

In practice the 1-PI vertex function Λa
µ(p,q)i j

αβ can be obtained by Fourier transform and amputa-

tion of the quark-gluon vertex function

V a
µ (x,y,z)

i j

αβ = 〈ψ i
α(x)ψ̄

j

β (z)A
a
µ(y)〉,

and the spinors ū(q), u(p) as solutions of the lattice Dirac equation

{

iγµ p̄µ +M( p̂)
}

u(p) = 0 ū(p)
{

iγµ p̄µ +M( p̂)
}

= 0

Since the higher order equivalent of eq. (3.1) reads

ū(q)Λ
a,(n)
µ (p,q)u(p) =−g2n+1T aū(q)

[

γµF1 +a(p+q)µG1 +a(p−q)µH1

]

u(p) (3.2)

by measuring (3.1) at different values of cSW we expect to be able to determine order by order the

values of cSW that cancel O(a) artifact.

3.2 PCAC mass improvement

The PCAC relation ∂µAa = 2mPa (Aa
µ being the isovector axial current, m the quark mass and

Pa the pseudoscalar current) on the lattice suffers from O(a) effects:

〈
1

2
Aa

µ(x)O〉= 2m〈Pa(x)Oa〉+O(a). (3.3)

If the theory is on-shell improved, though, O(a) effects are canceled and eq. (3.2) is exact up to

O(a2) effects. More to the point it has been shown [5] that eq. (3.2) can be used as a probe to

properly tune cSW .

In order to fully improve (3.2) the axial current has to be improved as well: a second coefficient,

namely cA, has to be introduced. The strategy suggested in [5] requires to measure

fA =
1

3
∑
x

〈Aa
0(x)ψ̄(y)γ5

1

2
τaψ(z)〉

fP =
1

3
∑
x

〈Pa(x)ψ̄(y)γ5

1

2
τaψ(z)〉

and define a fully improved PCAC mass via

mPCAC =
1
2

[

1
2
(∂ L

0 +∂ R
0 ) fA + cA∂ L

0 ∂ R
0 fP

]

fp

.

in the framework of the Schrödinger functional. By measuring mPCAC with different choices of

background fields it is possible to single out cSW and cA contributions and determine the two coef-

ficients.
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Figure 1: f
(1)
P , f

(1)
A and m

(1)
PCAC at finite bare quark mass with periodic (blue) and antiperiodic (red)

boundary conditions.

Since fermions are not yet available int NSPT for the Schrödinger functional, we explored the via-

bility of this approach inspecting the signals of fA, fP and mPCAC on a periodic (and antiperiodic)

lattice. Fig. (1) shows f
(1)
P , f

(1)
A and m

(1)
PCAC averaged over 42 configurations L=32 at fixed stochas-

tic time. Since data still require an extrapolation towards continuum stochastic time we expect

that final errorbars grow, nevertheless fig. (1c) suggests that we will be able to distinguish between

different boundary conditions.

4. A proof of concept

In order to show the correctness of the implementation of clover fermions we computed the

quark critical mass to up to two-loop for quenched Iwasaki gauge action. The highest order we

can compute is currently limited by the order cSW is known up to. A broad description of the

computational strategy is described in [6]. We performed the measurement on Iwasaki quenched

configurations at different lattice volumes and extrapolated towards the infinite volume limit.

The quark critical mass can be computed as the zero-momentum limit of the diagonal part of the

propagator:

Ŝ( p̂, m̂cr,β
−1)−1 = i/̂p+ m̂W ( p̂)− Σ̂( p̂, m̂cr,β

−1) (4.1)

Σ̂(0, m̂cr,β
−1) = m̂cr (4.2)

Eq. (4.1, 4.2) have to be intended as expansions in powers of the bare coupling. Since one-loop

quark critical mass is known, we plugged it as a counterterm: the one-loop extrapolated quark

critical mass is then expected to vanish. Fig. (2a) shows the values of m̂
(1)
cr at different values of the

square momenta (pa)2 and different lattice size: L=12 (black), 16 (cyan), 20 (magenta), 24 (red),

32 (blue). In fig. (2b) we plot the zero-momentum extrapolation of m̂
(1)
cr as a function of the inverse

lattice size L. Note that the red line in the figure only serves as a guide for the eye. At one-loop we

obtained

m
(1)
cr =−0.001±0.003 (4.3)

in good agreement with analytical results (remember that since we plugged the counterterm we

expect the one-loop critical mass to vanish).
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Figure 2: Σ̂(1)(pa) measured at different lattice sizes (a): L =12 (black), 16(cyan), 20(magenta),

24(red) and 32(blue) and its overall approach to the infinite volume limit (b). Red line only serves

as a guide for the eye towards L = ∞ limit.

We did the same for the two-loop critical mass m̂
(2)
cr as shown in fig. (3a,3b). Since in this case the

counterterm isn’t known our computation gives a first (preliminar) result. At two-loop we obtained
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Figure 3: Σ̂(2)(pa) measured at different lattice sizes (a): L =12 (black), 16(cyan), 20(magenta),

24(red) and 32(blue) and its overall approach to the infinite volume limit (b). Red line only serves

as a guide for the eye towards L = ∞ limit.

m
(2)
cr = 1.75±0.01. (4.4)

Precision can be further improved considering more momenta and performing a hypercubic lattice

expansion [6].
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5. Conclusions

We presented the current status of the implementation of clover fermions in NSPT. In prin-

ciple any two-loop computations is feasible, since one-loop cSW is known. In order to perform

computations at higher order we need to know further terms in the expansion of cSW : such a deter-

mination is the main goal of this project. At the moment we are exploring different strategis, trying

to understand the most promising.
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