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1. Introduction

We are accumulating the configurations near the physical masses of up-down (degenerated)
and strange quarks (N f = 2+1) on a 964 lattice with the lattice cutoff a−1 ∼ 2.3 [GeV] under the
project of HPCI (High Performance Computing Infrastructure) Strategic Programs for Innovative
Research (SPIRE) Field 5, “The origin of matter and the universe” [1]. The properties of these
ensembles have to be determined via the detailed analysis on the physical quantities such as the
light hadron spectrum, quark masses, and hadronic observables, extracted from the ensembles.

In this poster, we report on the mass and axial current renormalization factors determined
with the Schrödinger functional (SF) scheme for the RG-improved Iwasaki gluon action and three
flavors of the stout smeared O(a)-improved Wilson quark action. We employ α = 0.1 and nstep = 6
for the stout link smearing [2] parameters, and all link variables contained in the O(a)-improved
Wilson quark action are replaced with the stout smeared ones. The O(a)-improvement parameter
cSW has been determined nonperturbatively in Ref. [3] using the SF method. We determine the
renormalization factors at β = 1.82 (a−1 ∼ 2.3 [GeV]) where the simulations on the 964 lattice
with this lattice action are being carried out.

The renormalization constants for the axial and pseudo-scalar operators (and vector opera-
tor as a byproduct) with the SF scheme are determined using the standard method described in
Refs. [4, 5, 6, 7, 8]. The temporal and spatial lattice sizes are finite at T = aNT and L = aNS, and
a Dirichlet boundary condition in the temporal direction is imposed to define the SF scheme. The
boundary gauge fields at n4 = 0 and NT are kept fixed by the Dirichlet boundary condition and the
same boundary condition is applied on the smeared gauge field during the stout smearing steps.
The up, down and strange quark masses are degenerate and tuned to vanish in determining the
renormalization constants. The HMC (two-flavor part) and RHMC (single-flavor part) algorithms
with the SF boundary condition are employed to generate the gauge configuration. The action pa-
rameters are set to be β = 1.82 and cSW = 1.11 [3], and the boundary parameters are to be cP

t = 1
(cR

t = 3/2) for the plaquette (rectangular) term for the gauge action and c̃t = 1 for the quark action.

2. Axial, vector, and pseudo-scalar operator renormalization constants

The operators to be renormalized are defined by

Aa
4(x) = q(x)γ4γ5T aq(x), V a

4 (x) = q(x)γ4T aq(x), Pa(x) = q(x)γ5T aq(x). (2.1)

As it was observed that the nonperturbative O(a)-mixing correction to the axial current was con-
sistent with zero [3], we assume a negligible O(a)-mixing and employ the unimproved current
operators in determining the renormalization factors. The correlation functions used for setting the
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renormalization conditions are

fXY (t,s) =−
2

N2
f (N

2
f −1) ∑

~x,~y
f abc f cde〈O′dXa(~x, t)Y b(~y,s)Oe〉, (2.2)

fX(t) =−
1

N2
f −1 ∑

~x
〈Xa(~x, t)Oa〉, (2.3)

f1 =−
1

N2
f −1

〈O′aOa〉, (2.4)

fV (t) =
1

N f (N2
f −1) ∑

~x
i f abc〈O′aV b

4 (~x, t)O
c〉, (2.5)

where f abc is the structure constant of SU(N f ). The operator X (Y ) can be A4 or P. Oa and O′a are
boundary operators defined by

Oa =
1

(L/a)3 ∑
~y,~z

ζ (~y)γ5T a
ζ (~z), O′a =

1
(L/a)3 ∑

~y,~z
ζ
′
(~y)γ5T a

ζ
′(~z), (2.6)

where ζ and ζ ′ are boundary quark fields located at n4 = 0 and n4 = NT respectively.
Using the correlation functions (2.2)-(2.5), the renormalization factors are determined with

ZA =
√

Z̃A(2T/3)
∣∣∣∣
mq→0

, Z̃A(t) =
f1

nA
[ fAA(t,T/3)−2mPCAC fPA(t,T/3)]−1 , (2.7)

ZV = Z̃V (T/2)
∣∣
mq→0 , Z̃V (t) =

f1

nV fV (t)
, (2.8)

ZP = Z̃P(T/2)
∣∣
mq→0 , Z̃P(t) =

√
3 f1

nP fP(t)
, (2.9)

where nA, nV , and nP are normalization constants evaluated at the tree-level so as to be ZA = 1,
ZV = 1, and ZP = 1. To take the mass-less limit we employ an averaged PCAC mass for ZA and ZV ;

amq = amPCAC =
1
3

T/2+a

∑
t=T/2−a

a fA(t +a)−a fA(t−a)
4 fP(t)

, (2.10)

while a non-averaged mass for ZP;

amq = amPCAC =
a fA(T/2+a)−a fA(T/2−a)

4 fP(T/2)
. (2.11)

The simulation parameters are shown in Table 1. The phase angle θ is the parameter of the
generalized periodic boundary condition in each spatial direction for the quark field. The boundary
gauge fields are fixed to the identity matrix. The data are measured at every trajectory and the
statistical errors are estimated with the jackknife method after blocking data with the size of 100
trajectories. The simulations (A1S) and (A1L) are dedicated for ZA (and ZV as a byproduct), while
(P4a) and (P4b) are for ZP. The hopping parameter κ = 0.126110 corresponds to the critical value
κc determined in Ref. [3]. Almost vanishing masses are realized in the (A1S) and (A1L) runs.

The time dependence of Z̃A(t) and Z̃V (t) from (A1L) is shown in Figure 1. Z̃V (t) is almost
time-independent, and a short plateau around t = 17− 22 (∼ 2T/3) is observed for Z̃A(t) when
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Run L/a,T/a θ κ traj. HMC Acc.
(A1S) 8,18 1/2 0.126110 20000 0.8811(80)
(A1L) 12,30 1/2 0.126110 34700 0.9120(53)
(P4a) 4,4 1/2 0.126110 100000 0.8792(11)
(P4b) 4,4 1/2 0.125120 80000 0.8787(15)

Table 1: Parameters and statistics for the renormalization factors.

Run amPCAC ZV ZA ZP

(A1S) 0.00041(61) 0.9664(20) 0.9745(48) -
(A1L) -0.00080(33) 0.95153(76) 0.9650(68) -
(P4a) -0.021859(94) - - 1.01317(43)
(P4b) 0.013241(99) - - 1.00670(45)

Table 2: PCAC masses and renormalization factors ZV , ZA, and ZP.
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Figure 1: Time dependence of Z̃V (t) (left) and Z̃A(t) (right) on a 123×30 lattice (A1L).

disconnected diagrams are included properly. A similar behavior is observed in (A1S). The renor-
malization factors extracted with the definitions (2.7)-(2.9) are tabulated in Table 2. We assign the
discrepancy of ZA and ZV between two runs, (A1S) and (A1L), to the systematic error. We observe
that ZA ' ZV and ZA ' 1. This could indicate a better chiral property of the stout smeared quark
action we employed.

The renormalization factor for the pseudo-scalar operator depends on the renormalization
scale. The renormalization scale corresponds to the physical box size L and the scale is implicitly
defined by the value of the renormalized coupling (g2

SF(L)) in the SF scheme. To convert ZSF
P (1/L)

to the mass renormalization factor ZMS
m (µ) at a reference scale µ in the MS scheme, we need the

RG evolution of ZP together with the running of the renormalized coupling constant g2(µ) in both
the SF and MS schemes. The details of the mass renormalization factor are described in the next
section.
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3. Scale setting and mass renormalization

The renormalization factor of the pseudo-scalar operator ZP is evaluated at T = L = 4a and
β = 1.82. The simulation parameters and results are shown in Tables 1 and 2. We have two
simulations, (P4a) and (P4b). The scale L = 4a is chosen so that the RG evolution by the step
scaling of the coupling is available from the scale Lmax = 4a. The renormalized coupling in the SF
scheme at L = 4a and β = 1.82 is shown in Table 3, where the boundary condition defining the SF
scheme coupling is imposed on the gauge field. The PCAC mass in Table 3 is defined by Eq. (2.11).
The step scaling evolution for the SF scheme coupling from g2

SF(1/Lmax) ∼ 3.7− 3.8 is available
in the continuum limit [9]. The PCAC masses at κc = 0.126110 is slightly off the vanishing point
as seen in (P4a) and (G4a) runs. The discrepancy between κ = 0.12512 and κc are assigned to the
systematic error of Zm.

Combining the RG evolutions for ZP and the coupling in both schemes, we can extract the
mass renormalization constant ZMS

m (g0,µ) in the MS scheme [8, 9, 10, 11] by

ZMS
m (g0,µ) =

(
mMS(µ)

MRGI

)(
MRGI

mSF(1/Lmax)

)(
ZSF

A (g0,a/L)
ZSF

P (g0,a/Lmax)

)
, (3.1)

where Lmax = 4a will be applied. The mass ratios between the renormalization group invariant
(RGI) mass MRGI and the renormalized masses mMS (or mSF) are defined by(

MRGI

mMS(µ)

)
=
(
2b0ḡ2(µ)

)−d0/(2b0) exp
[
−
∫ ḡ(µ)

0
dg
(

τ(g)
β (g)

− d0

b0g

)]∣∣∣∣
MS

, (3.2)(
MRGI

mSF(1/Lmax)

)
=

[
n

∏
j=1

σP(u j)

](
2b0ḡ2(1/Ln)

)−d0/(2b0) exp
[
−
∫ ḡ(1/Ln)

0
dg
(

τ(g)
β (g)

− d0

b0g

)]∣∣∣∣∣
SF

.

(3.3)

ḡ2(µ) is the renormalized coupling constant in the MS scheme for Eq. (3.2), and that in the SF
scheme for Eq. (3.3). σP(u) is the step scaling function for ZP in the SF scheme. The argument u j

is the renormalized coupling defined by u j = g2
SF(2

j/Lmax) which is evolved from u0 = g2
SF(1/Lmax)

using the step scaling function σ(u) for the coupling via u j+1 = σ(u j).
In order to evaluate the mass renormalization constant ZMS

m (g0,µ), we employ σP(u) from
Ref. [8] and σ(u) from Ref. [9]. The number of steps n is chosen to be 5 from which we can evaluate
the exponent of Eq. (3.3) perturbatively. The two-loop mass anomalous dimension τ(g) [12] and
the three-loop beta function β (g) [13] are used in the SF scheme, while the four-loop estimates for
the mass anomalous dimension and beta function are employed in the MS scheme in evaluating
the mass renormalization constant. In order to evaluate the mass renormalization constant at the
reference scale µ = 2 [GeV], we need the scale of a−1 in physical unit at β = 1.82.

4. Results

The axial and vector current renormalization factors at β = 1.82 are evaluated as

ZA = 0.9650(68)(95), (4.1)

ZV = 0.95153(76)(1487), (4.2)
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Run θ κ traj. HMC Acc. amPCAC g2
SF

(G4a) π/5 0.126110 70000 0.8787(14) -0.04550(26) 3.662(17)
(G4b) π/5 0.125120 80000 0.8791(15) 0.00042(25) 3.776(16)

Table 3: Parameters, statistics and the renormalized coupling g2
SF at β = 1.82 and L/a = T/a = 4.

where the central values are from (A1L). The first error is the statistical one and the second is the
systematic one which is evaluated from the discrepancy between the two runs.

The mass renormalization constant ZMS
m (g0,µ) at µ = 2 [GeV] and β = 1.82 is evaluated as

ZMS
m (g0,µ = 2[GeV]) = 0.9950(111)(89), (4.3)

where the central value is extracted by combining the factors ZA from (A1L), ZP from (P4a), and
u0 from (G4a). For the scale a−1, we use the preliminary value a−1 = 2.332(18) [GeV] from
Ref. [14]. The first error is the statistical error and the second is the systematic one estimated from
the discrepancy to the mass renormalization constant evaluated using (P4b) and (G4b).

5. Summary

In this poster, we presented the determination of the renormalization constants for the axial and
vector currents and the quark mass in the Schrödinger functional scheme. The values in Eqs. (4.1)-
(4.3) were obtained for the RG-improved Iwasaki gluon and three flavors of the stout smeared
quarks at β = 1.82. By applying these renormalization factors to the results from the simulation on
the 964 lattice, we can obtain the quark masses and the decay constants precisely [14].
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