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In lattice quantum field theories with topological sectors, simulations at fine lattice spacings —

with typical algorithms — tend to freeze topologically. In such cases, specific topological finite

size effects have to be taken into account to obtain physical results, which correspond to infinite

volume or unfixed topology. Moreover, when a theory like QCD is simulated in a moderate

volume, one also has to overcome ordinary finite volume effects (not related to topology freezing).

To extract physical results from simulations affected by both types of finite volume effects, we

extend a known relation between hadron masses at fixed and unfixed topology by additionally

incorporating ordinary finite volume effects. We present numerical results for SU(2) Yang-Mills

theory.
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1. Introduction

In order to extrapolate simulation results in lattice QCD to the continuum limit, the lattice

spacing is made as small as possible. However, for an algorithm like Hybrid Monte Carlo, this

implies an increase of the topological auto-correlation time, and finally a freezing of the topological

charge, for any lattice discretisation [1]. In the case of chirally symmetric fermions, such as overlap

fermions, the Monte Carlo history tends to get stuck in one topological sector even for rather

large lattice spacing, see e.g. Refs. [2, 3]. In specific cases it might be motivated to fix topology

on purpose. For example when using a mixed action setup with overlap valence and Wilson sea

quarks, one observes an ill-behaved continuum limit due to different near zero-modes in the sea

and valence quark sector [4]. Extracting physically meaningful results from the topologically trivial

sector could be a solution.

There are several strategies to deal with this problem. The method we are interested in is

based on a relation between the physical mass of a hadron and its fixed topology counterpart [5–

7]. This method has already been tested with success in various models [8–17]. So far ordinary

finite volume effects have been neglected. However, also these effects can be important for QCD

simulations with light pions. Here we describe an extension of the method of Ref. [5], combining

both topological and ordinary finite volume effects for SU(N) Yang-Mills theories, as well as QCD,

as anticipated in Ref. [18]. After a brief discussion of ordinary finite volume effects and the method

used to extract masses from fixed topology, we present the extended equations and the results of a

numerical test in SU(2) Yang-Mills theory.

2. Ordinary finite volume effects

The difficulties in lattice simulations related to finite volume effects are well-known. A finite

volume with periodic boundary conditions allows the particle to interact with its own copies. This

artificial interaction causes a shift in the value of the mass obtained by simulations.

This mass shift has been rigorously analysed in Ref. [19]. Different results were obtained for

SU(N) gauge theory and for QCD, due to the different masses of the lightest stable particle, namely

the 0++ glueball and the pion. For Yang-Mills theories one obtains

M(L)−M(L = ∞) ∝
1

L
exp

(

−
√

3mgL

2

)

, (2.1)

where mg is the mass of the lightest glueball, (JPC = 0++) and L is the spatial extent of the lattice.

The corresponding QCD relation reads

mπ(L)−mπ(L = ∞) ∝
1

L
K1(mπL) , (2.2)

where mπ is the pion mass and K1 the modified Bessel function. We confronted eq. (2.1) with

lattice SU(2) Yang-Mills results for the static quark-antiquark potential V̂qq̄ (hats denote quantities

in lattice units). For this purpose, we computed V̂qq̄(r̂ = 3) in the volumes V̂ = L̂4, L̂= 11,12, . . . ,16

and 18, based on 4000 configurations in each volume.1 The results are in excellent agreement with

1The same set of configurations was used for the results reported in Section 3 to 5. Identifying the Sommer param-

eter r0 with 0.46 fm one obtains a lattice spacing of a ≈ 0.073 fm.
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the theory. For L̂ ≥ 14 the finite volume effects are negligible, but in smaller volumes they have

to be taken into account. From the fit of eq. (2.1) to the lattice results we can extract the glueball

mass to a good precision, m̂g = 0.74(4) (cf. Figure 2 in [18]) This is in excellent agreement with

the result obtained by a standard lattice computation of a glueball 2-point correlation function,

m̂g = 0.723(23) [20].

3. Topological finite volume effects

Fixing the topology, i.e. the restriction to only one topological sector, entails additional typ-

ically even stronger finite volume effects. A relation between a physical hadron mass M and the

hadron mass MQ,V obtained at fixed topological charge Q, in a finite space-time volume V , has been

derived in Ref. [5],

MQ,V = M+
1

2χtV
M(2)

(

1− Q2

χtV

)

+O

(

1

(χtV )2

)

, (3.1)

where M(2) is the second derivative of M with respect to the vacuum angle θ , at θ = 0, and χt is

the topological susceptibility. One can see that fixed topology causes finite volume effects, which

are only suppressed by powers of the inverse volume.

In practice, the physical mass M can be extracted by a fit of eq. (3.1) to numerical results

for MQ,V in various volumes and topological sectors. This method has been tested in Refs. [7–

18] with success. The static potential V̂qq̄,Q,V has been computed for different separations (r̂ =

1 . . .6) in different topological sectors, |Q| = 0,1,2, and various volumes, V̂ = 144,154,164,184.

Figure 1 shows V̂qq̄,Q,V (r̂ = 3); there is a clear distinction between topological sectors, especially

in small volumes. This calls for an indirect method to extract physical results. The curves represent

a global fit of eq. (3.1) to the numerical results, which is of good quality, χ2/d.o.f. . 1. The

extrapolated potential V̂qq̄(r̂ = 3) = 0.1646(2) is in excellent agreement with the corresponding

straight computation at unfixed topology, V̂qq̄(r̂ = 3) = 0.16455(7).
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Figure 1: The static potential (in lattice units), V̂qq̄,Q,V (r̂ = 3), as a function of the inverse lattice volume,

1/V̂ . The curves represent the fit of eq. (3.1) to the lattice results in the volumes V̂ = 144,154,164,184.

In σ -model studies, also χ̂t could be evaluated well in this manner [13, 16]. In 4d Yang-Mills

theory, however, the determination of χ̂t turned out to be plagued by large statistical errors. A
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more promising method for that purpose has been suggested in Ref. [6], which showed that the

correlation of the topological charge density q(x) at fixed topology behaves as

〈q(x)q(0)〉Q,V ≈
|x|→∞

−χt

V

(

1− Q2

χtV

)

+O

( 1

V 2

)

. (3.2)

Eq. (3.2) implies that — at a large separation |x| — the correlation 〈q(x)q(0)〉Q,V should reach a

plateau, and that its value determines χt . The advantage of this method is the need of only one

volume and one topological sector.

Figure 2 has been generated in the volume V̂ = 164, based on an all-to-all computation of

the correlator. This was carried out after performing 8 cooling sweeps, in order to smooth out the

ultra-violet fluctuations without destroying the topological structure. Each fit of the plateau works

with χ2/d.o.f. ≈ 1. This suggests that this method is promising indeed.
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Figure 2: The correlation 〈qx q0 〉|Q| as a function of the on-axis separation |x|, after 8 cooling sweeps, for

the lattice volume V̂ = 164.

4. Combining topological and ordinary finite volume effects

The results in Section 3 were obtained for volumes where ordinary finite volume effects are

negligible. This was rather easy, as SU(2) theory is a special case since even the lightest glueball

has a considerable mass, which implies strongly suppressed ordinary finite volume effects. As

indicated in Section 2, and applied in Section 3, one has to discard volumes with L̂ < 14, i.e. box

sizes L . 1 fm. On the other hand, in QCD the lightest particle is the pion, which is much lighter

than any glueball in SU(2) Yang-Mills theory. Therefore one expects persistent ordinary finite

volume effects up to larger lattices.

In order to understand how eq. (3.1) is affected by ordinary finite volume effects, we also

computed the static qq̄-potential for smaller lattices, L̂ < 14, which are affected by significant

finite volume effects. In Figure 3 we show results for seven volumes in the range 114 . . .184,

for |Q| = 0,1 and 2. The lines represent the fit of the formula (3.1) in volumes V̂ > 134. For

these volumes, this equation is well compatible with our data. For smaller volumes, however, the

discrepancies are significant and clearly show that ordinary finite volume effects have to be taken
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Figure 3: V̂qq̄,Q,V (r̂ = 3) as a function of 1/V̂ . The curves represent the fit of eq. (3.1) to the lattice results

in the four largest volumes, V̂ = 144,154,164,184. There is are sizable discrepancies between these curves

and the lattice data in the smaller volumes, V̂ = 114,124,134.

into account. Therefore it is highly desirable to combine eq. (3.1) with eq. (2.1) or (2.2), in order

to obtain a formula which captures both ordinary and topological finite size effects. Comparing

the topological sectors, one notices that the difference between the curve and the data is larger for

topological charge Q= 0 than for |Q|= 1, 2. For the latter the finite volume effects seem negligible.

This different behaviour underlines the topological charge dependence of ordinary finite volume

effects at fixed topology.

To derive such expressions, one first has to compute ordinary finite volume effects also at

non-vanishing θ angles, using equations analogous to (2.1) or (2.2). To this end, we employed

the Lüscher method [19], which is universal and therefore applicable to SU(N) Yang-Mills theory.

Starting from the finite volume equation at fixed θ , one has to perform a calculus similar the one

leading to eq. (3.1), see Ref. [7]. In Yang-Mills theory, the expression, which captures both types

of finite volume effects, is

MQ,L ≈ M+
1

2χtV
M(2)

(

1− Q2

χtV

)

− A

L
exp

(

−
√

3mgL

2

)

+
1

2χtV

(

B−A
√

3m
(2)
g

)

(

1− Q2

χtV

)

exp

(

−
√

3mgL

2

)

,

(4.1)

where MQ,L is a hadron mass in a finite volume in one topological sector, whereas M and mg are

the physical mass (at infinite volume and θ = 0) of the hadron and the 0++ glueball. A and B are

coefficients, which are independent of V and Q, and (2) denotes the second derivative with respect

to θ at θ = 0. The corresponding formula for the pion mass in QCD reads

mπ ,Q,L ≈ mπ +
m
(2)
π

2χtV

(

1− Q2

χtV

)

+
3

16π2

m2
π

F2
π

K1(x)

x
+

m
(2)
π E

2χtV

(

1− 2Q2

χtV

)

K1(x)

x

+
3

32π2χtV

m2
π

F2
π

(

1− Q2

χtV

)

[(

m
(2)
π

mπ
− 2

F
(2)
π

Fπ

)

K1(x)

x
−1

2

m
(2)
π

mπ

(

K0(x)+K2(x)
)

]

,

(4.2)

where Fπ is the pion decay constant, E is another constant (independent of V and Q), Kn is the

modified Bessel function and x = mπL.
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V̂qq(r̂ = 3) m̂g χ̂t ×105

fit based on eq. (4.1) 0.16437(15) 0.67(10) 9.5(2.0)

result at unfixed topology [20, 21] 0.16455(7) 0.723(23) 7.0(0.9)

Table 1: Results for the static potential V̂qq̄(r̂ = 3), the mass m̂g of the JPC = 0++ glueball and the topological

susceptibility χ̂t , obtained by a fit of eq. (4.1) to fixed topology lattice results for V̂qq̄,Q,V (r̂ = 3).

5. Numerical test in SU(2) gauge theory

Figure 4 shows the same data points as Figure 3, but now with a fit according to eq. (4.1), which

includes the ordinary finite volume effects. The fitting parameters are M̂,M̂(2),m̂g,m̂
(2)
g ,A,B and χ̂t .

We see that eq. (4.1) matches the data very well, with χ2/d.o.f. < 1; the explicit results are given

in Table 1. They all agree with the literature, albeit with considerable errors for m̂g and χ̂t . In

particular, for the topological susceptibility the error is larger than 20%, hence for that quantity a

different approach should be used, such as the method discussed in Section 3. Nevertheless the

evaluation of V̂qq̄ is achieved to a high precision, with an error below 0.1%.
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Figure 4: V̂qq̄,Q,V (r̂ = 3) as a function of 1/V̂ . The curves represent the fit of eq. (4.1) to the lattice results

in all volumes V̂ = 114, . . . ,184. We obtain very good agreement, even at small volumes and Q = 0.

To conclude, we have included ordinary finite volume effects in a relation between a hadron

mass at fixed topology and finite volume, and the corresponding physical mass. We successfully

tested this new relation in SU(2) Yang-Mills theory for the static quark-antiquark potential. Due to

this extension, the method becomes more promising in QCD applications. This is currently under

investigation.
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