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1. Lefschetz-thimble method

The Lefschetz-thimble path integral is a new approach to the sign problem of quantum Monte
Carlo simulation. The Boltzmann weight need not be semi-positive definite, and the quark (fermion)
determinant causes its oscillatory behavior in finite-density lattice QCD (and many other condensed
matter systems). In those systems, importance sampling breaks down for practical purpose, and
moreover the mean-field approximation requires a great care to give a consistent result with phys-
ical requirements. We review our result on the Lefschetz-thimble approach to the sign problem
appearing in the mean-field approximation [1].

Let us consider a multiple integration that gives the partition function,

Z=[ d'xe W, (1.1)
Rn
where S(x) is a complex action functional of the real field x = (x1,...,x,) € R". In order to circum-
vent the oscillatory integral, we perform integrations on steepest descent paths, called Lefschetz
thimbles, instead of (1.1). Each Lefschetz thimble is an n-dimensional space spanned around a
saddle point z° in C" (o € X). Consider Morse’s flow equation for complexified variables z [2]:

dZ,‘i aS(Z)
dt( 7 ) (1.2)

The Lefschetz thimble J is identified as the set of points reached by some flows emanating from
z9. The partition function can now be computed as the sum of the nicely converging integrations;

Z=Y n | d'ze S, (1.3)
ceXr Jo

The coefficient ng is given by the intersection number between R” and Rs; ng = (Rg,R"). The
dual thimble R is defined as the set of the points reached by flows getting sucked into z°. This
method turns out to be useful for evading the sign problem in some lattice field theories [3]. For
recent developments of this technique in various other contexts, see [4, 5].

2. Sign problem in the mean-field approximation

In order to understand how the sign problem appears in the mean-field approximation, let us
consider a field theory S[¢] with finite volume V. The partition function is given by

Z= /9(]) exp —S[@]. (2.1)
Let us consider a background field method. The constrained effective action is given by
exp~Sealows] = [ 29 8((9) ~ o) exp—5[g], 22)

where (¢) = [dx¢(x)/V. In order to reproduce the original partition function, we need an integra-
tion over the background field ¢y, i.e.,

Z = /d¢MFexp _Seff(¢MF). (2.3)
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Since Sef is typically proportional to the volume V, the saddle-point approximation is useful.
If the original action S is real, so is Sefr and the saddle-point approximation can be done without
any difficulty. If S takes complex values, however, Sefr is also complex. One cannot find saddle
points in the original integration cycle, and cannot conclude physically sensible results. This is the
sign problem appearing in the mean-field approximation [6], and we will tackle this problem for a
Polyakov-loop effective model of the dense-heavy quark system [1].

3. Application to the sign problem of Dense QCD

The fundamental Polyakov loop #3 is an order parameter of confinement;

B
(3 = %tr L], L= Pexp (ig/ A4dx4> , (3.1
0

where & refers to the path ordering. Using the background field method, or the mean-field approx-
imation, we consider an effective action for the Polyakov loop. It gives an SU(3) matrix integral:

Z= dL exp[—Sesr(L)], (3.2)
SU(3)

For our demonstration, we take a simplified heavy-quark model [6, 9]:
321
Sett(L) = —h(z) (e“€3 + e‘“%) (3.3)

Here, (5 = trL~! /3. When i # 0 and u = Bug # 0, the integration (3.5) is oscillatory because
Setr takes complex values. When the quark chemical potential g is turned on under the nontrivial
Polyakov-loop background, the effective action Se(0) takes complex values in general due to the
quark determinant. This makes the integration (3.5) oscillatory, and the sign problem remains in
the mean-field approximation [6].

Let us simplify the matrix integral by taking the Polyakov gauge, in which the Polyakov loop
becomes diagonal:

L= dlag ei(61+92)’ei(791+92)7672i62 7 (34)

where 6 , are real parameters if L € SU(3). The Weyl group acts on these parameters (6;,0;) as
(61,6,) — (—61,6:), (61,602) — ((61 +362)/2,(01 — 62)/2) and it only permutes eigenvalues of
the Polyakov loop (3.4). Thus, the parameter region can be restricted to € = {(6;,6,) | 3|6:| <
0; < m}, and the partition function becomes

7 = /@deldezH(el, 92) exp [—Seff(el y 92)] . (3.5)

H(0) =sin® 0 sin?((6; +36,)/2)sin’((6; —36,)/2) is the Vandermonde determinant, which comes
from the Haar measure. In this parametrization,

Setf —InH = —%(2003 01 cos(6r —ip) +cos(26, +iu))

—In [sin2 9, sin? (6‘ +2392> sin? (9‘ _2392)] . (3.6)
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Figure 1: Morse’s flow (1.2) around the saddle point (the black blob) z* in the Re(z; )-Im(z;) plane (2 = 0.1,
u =2) [1]. The red solid and green dashed lines are the Lefschetz thimble J, and its dual K., respectively.

In order to apply the saddle-point approximation to this model, we rewrite the original integral
(3.5) using the Lefschetz-thimble method. After complexification, the Polyakov line L € SL(3,C),
and let us denote the complexified variables of 6; > by z;>. In the limit g — +oo, the saddle-point
equation can be approximately solved analytically, and we find

367“/2
~ 2\/E’

In general, the saddle point z satisfies that Imz} = Rez5 = 0. Figure 1 explicitly shows the behavior

et
g

*

IH = —

7 3.7

of Morse’s downward flow (1.2) around the saddle point in the two-dimensional subspace Imz; =
Rezy = 0 of C2. The dual thimble 8, of z* is shown with the green dashed curve, and it indeed
intersects with the original integration cycle €. Therefore, the complex saddle point contributes,
and the integration on the Lefschetz thimble . is identical to that on €.

Using the saddle-point approximation, we can find that the effective action Sc¢ and Polyakov
loops (3, {5 take real values. Therefore, even after performing the saddle-point approximation
using the Lefschetz thimble method, the physical quantities turn out to be real. Furthermore,

2
(z) — (l3) ~ 3 (sinh2iz5 —2cosz] sinhiz3) > 0, (3.8)

and the difference between two Polyakov loops at finite chemical potential can be captured cor-
rectly [6].

There exists a deep reason why the physical quantities remain real using the complexified
saddle-point approximation, and the charge conjugation plays an important role there [7]. We will
generalize this statement as a common property of the Lefschetz decomposition formula (1.3).

4. General theorem on the mean-field approximation and charge conjugation

By definition, the partition function (1.1) for physical systems must be a real quantity, however
the Boltzmann weight S(x) may be complex. The condition Z € R is manifestly ensured if there
exists charge conjugation C : (x;) — (Cijx;), which satisfies C;; = Cj; € R, C? = 1 and

S(x) = S(C-x). @.1)
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The linear map C on R” can be extended to an antilinear map on C" by
CK: (Zi) — (Cijfj). 4.2)

Using Eq.(4.1), the Morse’s flow equation shows covariance under the conjugation,

dz;  (9S(C-2)
- = <8zi ) (4.3)
The antilinearly transformed function z(¢) := CK(z(t)) satisfies
& . (35@Y_ (50

which is nothing but the original flow equation (1.2). This shows that the downward flow itself has
an invariance under the transformation CK.

Let us decompose the set of saddle points X into three disjoint parts. For simplicity, we assume
that S(z°) € R only if the saddle point satisfies z° = K(z°); then, L =Xy UX, UX_, where

Yo={0|z°=L-z°}, Xi={o|ImS(z%)=0}. 4.5)

The transformation CK induces a bijection £, — X_. Equation (1.3) becomes

z=Y ns / dze 5@+ ¥ n, / d"ze S0, (4.6)

oy Jo T€X, Je+IK

Each integral on the r.h.s. of the formula (4.6) is real or purely imaginary depending on whether
CK changes orientation of Js and of J4 Ufjg. Since the 1.h.s. is real, n; must be zero unless the
integral on J; or on J; +JX is real [1]. This conclusion can also be applied to expectation values
of any physical observables that satisfy the symmetry (4.1). The decomposition formula (4.6) takes
a suitable form for the saddle-point analysis.

We can easily check that the previous example (3.5) shows an invariance under the conjugation

CK: <Z17Z2) = (57 _5)7 (47)

and the saddle point z* satisfies the invariance under CK. This is the reason why the Lefschetz-
thimble integration on J, gives real expectation values of physical quantities, and its saddle-point
approximation also satisfies that property. Let us check our theorem also applies to the finite-
density QCD. The QCD partition function at temperature T = $~! and quark chemical potential
Mk 18

Zocp = / DA det M (U, A) e SMHAL (4.8)

where Sym = %trff dx* [ d*x|F,v|? (> 0) is the Yang-Mills action, and
det. s (Ugk,A) = det [y (dy +igAv) + V! gk + mqx] 4.9)

is the quark determinant. When gy 7# 0, the quark determinant becomes an oscillatory functional of
the gauge field A, and the sign problem emerges. Even when pig # 0, the charge conjugation A
—A" with the 5 hermiticity implies that the fermion determinant still satisfies the identity [6],

det A (Ugk,A) = det A (— Uk, AT) = det A (g, —A). (4.10)
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The charge ¢ and complex .#  conjugation, or the ¥’ .%  transformation, serves as the antilinear

map (4.2) for finite-density QCD [7], and our theorem applies to it. The Lefschetz-thimble decom-

position (4.6) manifestly respects the €% symmetry so that Zocp € R.
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