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1. Introduction

The sign problem is known to be one of the most difficult problems in lattice gauge theory, for
example, QCD with the quark chemical potential µ or including the θ term where the correspond-
ing Boltzmann weight is complex. So far, a considerable number of research within a framework
of Monte Carlo method has been devoted to overcome the sign problem, and there are limited suc-
cesses, depending on dimensionality or a property of specific model. On the other hand, another
possibility to avoid the sign problem is just to leave Monte Carlo method.

The tensor renormalization group (TRG) method is one of such a possibility and has no sign
problem, which was originally proposed for studying two-dimensional classical systems by Levin
and Nave[1]. This method no longer regards the Boltzmann weight as a probability of generating
field configurations as in Monte Carlo method. The TRG method consists of two main steps. The
first step is to obtain the tensor network representation of the partition function of a system. In
order to obtain the representation, one has to expand the Boltzmann weight using new integers and
integrate out the old degrees of freedom. The new integers will become the indices of the tensor.
The next step is to reduce the number of the tensors under controlling systematic errors. After the
number of the coarse grained tensors decreases, it is possible to calculate the partition function by
contracting all indices of the tensors. Although the original TRG was invented for two dimensional
system, the higher order TRG (HOTRG) was introduced by Xie et al.[2] as an extension to higher
dimensional systems.

The strong CP problem is one of the interesting topics in QCD; why the parameter θ for CP
odd operator in the QCD Lagrangian, where such a term is allowed to exist, is so small. In order
to answer the question, understanding of the non-perturbative QCD dynamics including θ -term is
indispensable, but the presence of the this term causes the sign problem. Instead of dealing with
QCD directly, it is reasonable to start to investigate its toy model, CP(N −1) model, which shares
many features with QCD. A long time ago, Schierholz suggested an interesting scenario to solve
the strong CP problem in CP(N − 1) model by analyzing phase diagram in the β − θ plane [3].
Although it is not clear that the solution can be directly applied to QCD, it is interesting to verify
the scenario with another method, namely TRG approach which is absent of the sign problem.

In this report, we apply the HOTRG to CP(N − 1) model in two dimensions, and present
the tensor network representation and numerical results. Although including θ -term in the tensor
network representation is straightforward1, we present the tensor at θ = 0.

2. Tensor network representation of CP(N −1) model

The partition function of lattice CP(N −1) model is given by

Z =

∫
∏

i
dzidz∗i ∏

<i, j>
dUi, jexp

{
βN ∑

i, j

[
z∗i · z jUi, j + z∗j · ziU

†
i, j

]}
, (2.1)

where zi is N-component complex scalar field of unit length, |z| = 1, and Ui, j is link variable
described by auxiliary vector field Ai, j, i.e. Ui, j = exp{iAi, j}. In order to obtain a tensor network

1An explicit form of tensor in the presence of θ -term shall be given in a separate paper.
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representation, one has to expand the Boltzmann weight with new integers, and then integrate out
the old degrees of freedom (The complex fields zi and the auxiliary field A in this case). In the end,
one can obtain a tensor which has indices of the new integers.

To expand the Boltzmann weight with new integers, we use the characterlike expansion [4],

exp
{

βN
[
z∗i · z jUi, j + zi · z∗jU

†
i, j

]}
= Z0(β )

∞

∑
l,m=0

d(l;m)exp[i(m− l)Ai, j]h(l;m)(β ) f(l;m)(zi,z j), (2.2)

where d(l;m) are dimensionalities of characterlike representations, h(l;m)(β ) are characterlike expan-
sion coefficients, f(l;m)(zi,z j) are characterlike expansion characters, and Z0(β ) is the normalization
factor which makes h(0;0)(β ) = 1. The integers l and m will become the indices of the tensor shown
below.

The characterlike expansion coefficients h(l;m)(β ) are expressed by the modified Bessel func-
tions of the first kind

h(l;m)(β ) =
IN−1+l+m(2Nβ )

IN−1(2Nβ )
. (2.3)

Since the modified Bessel function of the first kind, In(x), decreases rapidly as n increases with a
fixed value of x, one can safely truncate the sum of l and m in eq. (2.2) at some order (say lmax).

We show some explicit form of the dimensionalities of characterlike representations d(l;m) and
the characterlike expansion characters f(l;m)(zi,z j) with any values of l.
For m = 0,

d(l;0) =

√
(N −1+ l)!
l!(N −1)!

, (2.4)

f(l;0)(zi,z j) =

√
(N −1+ l)!
l!(N −1)!

(zi · z∗j)l. (2.5)

For m = 1,

d(l;1) =

√
(N + l)!(N −1+ l)
l!(N −1)!(N −1)

N −1
N −1+ l

, (2.6)

f(l;1)(zi,z j) =

√
(N + l)!(N −1+ l)
l!(N −1)!(N −1)

[
(zi · z∗j)l(z∗i · z j)−

l
N −1+ l

(zi · z∗j)l−1
]
. (2.7)

For m = 2,

d(l;2) =

√
(N −1+ l)(N + l)(N +1+ l)!

2(N −1)l!N!
N(N −1)

(N −1+ l)(N + l)
, (2.8)
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Figure 1: Decomposition of characterlike expansion characters f(l;m)(zi,z j).

f(l;2)(zi,z j) =

√
(N +1+ l)!(N −1+ l)(N + l)

2l!N!(N −1)

×
[
(zi · z∗j)l(z∗i · z j)

2 − 2l
N + l

(zi · z∗j)l−1(z∗i · z j)+
(l −1)l

(N −1+ l)(N + l)
(zi · z∗j)l−2

]
.

(2.9)

The term, f(l;m)(zi,z j), is expressed by the combination of two complex scalar fields, zi and
z j. In order to obtain a tensor network representation, one has to integrate out the complex scalar
fields z site by site. For that purpose, it is convenient to rewrite it as follows,

f(l;m)(zi,z j) = ∑
{a}

Fa1,··· ,al+m
(l;m) (zi)F̃

a1,··· ,al+m
(l;m) (z j), (2.10)

where {a}= a1,a2, · · · ,al+m, and an = 1,2, · · · ,N for n = 1,2, · · · , l+m. A pictorial expression of
this decomposition is illustrated in Figure 1. The explicit forms of F and F̃ are as follows.
For m = 0,

Fa1,··· ,al
(l;0) (zi) =

(
(N −1+ l)!
l!(N −1)!

) 1
4

za1
i · · ·zal

i , (2.11)

F̃a1,··· ,al
(l;0) (zi) =

(
(N −1+ l)!
l!(N −1)!

) 1
4

z∗a1
i · · ·z∗al

i . (2.12)

For m = 1,

Fa1,··· ,al ,a′1
(l;1) (zi) =

(
(N + l)!(N −1+ l)
l!(N −1)!(N −1)

) 1
4 [

za1
i z∗a′1

i +

√
l

N(N −1+ l)
δ a1a′1

]
za2

i · · ·zal
i , (2.13)

F̃a1,··· ,al ,a′1
(l;1) (zi) =

(
(N + l)!(N −1+ l)
l!(N −1)!(N −1)

) 1
4 [

z∗a1
i za′1

i −

√
l

N(N −1+ l)
δ a1a′1

]
z∗a2

i · · ·z∗al
i . (2.14)
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Figure 2: Integrating out the N-component complex scalar field zi.

For m = 2,

Fa1,··· ,al ,a′1,a
′
2

(l;2) (zi)

=C(l;2)

[
za1

i za2
i z∗a′1

i z∗a′2
i −

l(N −1+ l)+
√

lN(N −1+ l)
(N −1+ l)(N + l)

δ a1a′1za2
i z∗a′2

i

]
za3

i · · ·zal
i , (2.15)

F̃a1,··· ,al ,a′1,a
′
2

(l;2) (zi)

=C(l;2)

[
z∗a1

i z∗a2
i za′1

i za′2
i −

l(N −1+ l)−
√

lN(N −1+ l)
(N −1+ l)(N + l)

δ a2a′2z∗a1
i za′1

i

]
z∗a3

i · · ·z∗al
i , (2.16)

with

C(l;2) =

(
(N +1+ l)!(N −1+ l)(N + l)

2l!N!(N −1)

) 1
4

. (2.17)

After the decomposition, the last step is to integrate out the old degrees of freedom, z and A.
If we focus on a site i, there are two F and two F̃ , as illustrated in Figure 2. A tensor expressed in
terms of them is given by

T((ls;ms),{a})((lt ;mt),{b})((lu;mu),{c})((lv;mv),{d})

=
∫

dzidz∗i
√

d(ls;ms)d(lt ;mt)d(lu;mu)d(lv;mv)h(ls;ms)(β )h(lt ;mt)(β )h(lu;mu)(β )h(lv;mv)(β )

× F̃a1,··· ,als
(ls;ms)

(zi)F
b1,··· ,blt
(lt ;mt)

(zi)F̃
c1,··· ,clu
(lu;mu)

(zi)F
d1,··· ,dlv
(lv;mv)

(zi). (2.18)

The integration of the complex scalar fields, zi and z∗i , can be done analytically and then the ele-
ments of the tensor are fixed.

At this point, we mention the integration of the link variable. In contrast to the case of the
complex scalar fields, the integration of the link variable is rather simple.∫ π

−π
dA exp{i(m− l)A}= δl,m. (2.19)

This just gives a constraint that the integer l is equivalent to the integer m. By using the tensor in
eq.(2.18), we apply the HOTRG and obtain the partition function of CP(N −1) model.
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Figure 3: Average energy of CP(1) model computed by HOTRG and Metropolis algorithm. The lattice
size is 4× 4. The orange marks indicate the results of HOTRG and the green marks indicate the results of
Metropolis algorithm.

3. Numerical results

First, we compare the result of TRG method (lmax = 1,2) with that of Monte Carlo simulation.
Figure 3 compares the average energy of CP(1) model computed by the two methods. The result
of TRG method (lmax = 2) is almost consistent with that of Monte Carlo simulation. The little
difference between the two results is considered to the truncation error lmax = 2 of the HOTRG. It
is expected that these two results are consistent at sufficiently large lmax.

Next, Figure 4 compares the result of the HOTRG with that of the O(3) nonlinear sigma
model in two dimensions which is analyzed by the same method. Unmuth-Yockey et al. applied
the HOTRG to the O(3) model [5]. By following them, we compute the average energy of O(3)
model. The energy of the two models is connected to each other in the continuum limit by the
relation

1
β
+EO(3)(β ) = ECP(1)(β )+6. (3.1)

Using this relation, we mapped the result of the O(3) model into the graph. As lmax increases, the
systematic errors decrease. In the limit β = ∞, these two results are expected to be consistent and
in fact such a tendency is observed.
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Figure 4: Average energy of CP(1) model and O(3) model computed by using HOTRG. The lattice size is
220 ×220. The circle marks indicate the results of CP(1) model and the triangle marks indicate the results of
O(3) model.

4. Summary

In this report, we show a tensor network representation of CP(N − 1) model without the θ -
term. It is confirmed that the numerical results of CP(1) model at θ = 0 using the TRG method are
consistent with that computed by Monte Carlo simulation and that of O(3) model which is analyzed
by the same method in the region β ≫ 1.

For our future work, we shall try to do implementation including the θ -term. In the presence
of this term, the integration over link valuables develops the additional terms, and furthermore l
no longer equals m. In this case, the computational cost of the TRG methods turns out to be very
expensive and we may need some techniques to reduce the cost.
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