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filter to reduce or possibly eliminate the need for fine tuning.
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Discretizing the Dirac operator on a space-time lattice has historically led to a series of com-
promises. The naive discretization leads to extra doubler fermion states that become extra physical
flavors of fermions in the continuum limit. To overcome this Wilson [1] added an extra term to the
naive operator that made the doublers heavy and thus decouple from the theory, but broke chiral
symmetry in the process. Another option emerged with the rediscovery of an idea put forth by
Ginsparg and Wilson (GW) [2] which allowed for a single flavor of fermion to only mildly break
chiral symmetry, while remaining local. The GW relation is satisfied by the domain wall (approxi-
mately) [3] and overlap [4] operators, which were later discovered to be related. These GW Dirac
operators offer theoretically nice properties with the major downside being a significantly increased
computational cost compared with the simpler, but less theoretically pleasant alternatives.

Here we present a new discretization of the Dirac operator that also preserves chiral symmetry
in accordance with the Ginsparg-Wilson relation but is computationally much less expensive than
the other formulations that do. However the elimination of the doubler states is only approximate in
the simplest implementation. While the doublers are still present, they are suppressed compared to
the one wanted flavor. We have explored simple tuning of the filter for valence measurements and
will also discuss further directions for improvement. We also mention the possibility of applying
the same approach to create a 2 flavor operator from staggered fermions.

1. Flavor Filtered Fermions

The naive discretization of the massless Dirac operator is

DN =
1
2 ∑

µ

γµ

[
Tµ −T †

µ

]
(1.1)

using the parallel transporter for direction µ

Tµ(x,y) =Uµ(x)δx+aµ̂,y (1.2)

with a the lattice spacing. In the free case (Uµ = 1) the naive Dirac operator in momentum space is

DN(p,q) =
1
V ∑

x,y
e−ip·xDN(x,y)eiq·y = δ (p,q)i∑

µ

γµ sin(apµ) . (1.3)

This operator has 16 zeros at momenta points where apµ ∈ {0,π}. We will refer to the mode at
p = {0,0,0,0} as the wanted physical one and the 15 other modes as unwanted doublers. In the
interacting case, there will still be 16 poles in the propagator, which will become 16 quark species
in the continuum limit.

Here we will attempt to eliminate these states from the propagator by multiplying it by some
operator F to get

F(DN)
−1F† (1.4)

with the above form chosen to preserve γ5-Hermiticity and chiral symmetry. The operator F should
filter out the doubler flavors while preserving the physical flavor. One possible choice for the “flavor
filter” in momentum space is

F = ∏
µ

[1+ cos(apµ)]/2 . (1.5)
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One can see that this operator is 1 for p = {0,0,0,0} and zero if any of the apµ = π .
If we were to define our new lattice Dirac operator as the inverse of the propagator in (1.4),

we would get divergences when the filter goes to zero at the doubler states. We can alleviate this
problem by appealing to the Ginsparg-Wilson relation

1
D

γ5 + γ5
1
D

= γ5ρ +ργ5 (1.6)

where ρ is some local operator which we will take to be the constant 1/2. We then define our new
propagator to be

D−1
F = ρ +F(DN)

−1F† . (1.7)

After transforming the filter F back to real space and including the gauge field, we get

F = Symµ ∏
µ

[
2+Tµ +T †

µ

]
/4 (1.8)

where Symµ means to symmetrize the product over all permutations of µ in order to preserve
rotational invariance. Since the links will effectively be renormalized, we instead consider a more
general form of the filter given by replacing the individual terms in the product with

Fµ = (1−α)+
α

2
(
Tµ +T †

µ

)
(1.9)

This allows us to explore the transformation from the naive operator (α = 0) to the tree level flavor
filtered one (α = 0.5) and to provide a simple approach to tuning the filter (α > 0.5).

If we expand the filter into a set operators with one for each number of links in the product,
we would get 5 operators corresponding to a 0 link (constant) operator through a 4 link operator.
These 5 terms would correspond to the leading order (dimension 3) operators that appear in the
corresponding Symanzik effective action. The general case for tuning at leading order would then
require 5 parameters. Since the overall normalization can be accounted for by scaling observables,
only ratios of the coefficients need to be fine-tuned, which leaves 4 parameters. The feasibility of
tuning these parameters is currently under study.

The massless Dirac operator corresponding to the propagator (1.7) is

DF =
1
ρ
− 1

ρ
F
[
ρDN +F†F

]−1
F† . (1.10)

The simplest way to include a mass is to replace DN with DN +m. This has the advantage that one
can spin-diagonalize the denominator in the propagator to get 4 staggered Dirac matrices so the
effort for the solver is just that of 4 staggered solves. One could use other operators for the mass
term by multiplying m by some operator G that, for example, would make the doublers heavier than
the physical mode. However this may increase the expense of the operator making the solver more
expensive. One would need to weigh the possibly improved condition number of the operator with
the increased cost to determine if it is worthwhile. For now we stick to the simplest mass term.

We can get an alternate picture of how the doubler states are being filtered out by looking at
the action. The fermion determinant can be rewritten as the ratio of determinants

|DF |=
|DN +m|

|ρ(DN +m)+F†F |
. (1.11)
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Figure 1: Local pion γ4γ5 correlator on quenched 323×64 lattices with varying filter parameter α of 0 (left),
0.5 (center) and 0.54 (right). For α = 0 there is a large contribution from the oscillating state which makes
the correlator negative on even time slices and therefore not shown on the plot. At α = 0.54 the oscillating
state is too small to measure.

The numerator contains the usual naive Dirac matrix, which will give 16 flavors of quarks in the
continuum. The denominator corresponds to a set of 16 bosonic (ghost) quarks that, in the absence
of the extra F†F term, would quench out the regular fermionic quarks leaving a fully quenched
theory. The extra filter term, however, makes one of the 16 bosonic quarks heavy while keeping
the other 15 light, so that only the light 15 bosonic quarks quench out 15 of the fermionic quarks
leaving a single light fermionic quark and the heavy bosonic quark, which decouples from the
theory. This partial quenching of 15 of the 16 flavors, however, is only approximate without a
properly tuned filter.

2. Simulation results

We performed tests on quenched gauge field configurations generated with a standard plaquette
action on 323× 64 lattices with β = 6.4. The meson spectrum measurements use a lattice quark
mass of am = 0.0069 which gives a pion mass in lattice units of about amπ ≈ 0.15. The flavor
filtered fermion operator was implemented in the FUEL code [5].

In Figure 1 we show results for the pion spectrum using the local pion operator ψ̄(x)γ4γ5ψ(x)
for a point source. This operator has an oscillating state propagating in time that is very large in the
case of naive fermions (α = 0), and is not visible on the plot since it makes the correlator on the
even time slices go negative. When the filter is at α = 0.5 the oscillating state has been noticeably
suppressed, and for α = 0.54 it is no longer visible in the correlator.

In Figure 2 we show non-local meson correlators which are obtained by including combina-
tions of shifts and phase factors in the source and sink operators. The sources were constructed
from 8 wall sources confined to even or odd sites in each spatial dimension. For naive fermions,
the propagator reduces to 4 copies (flavors) of staggered fermions. We can then identify states using
the staggered (spin⊗ taste) language. We prefix this notation with an extra factor that indicates the
flavor state due to the 4 staggered copies and will use this language to refer to the filtered operator
states too. The nonlocal meson states we show here correspond to the operator γF(γ45⊗ξ45) where
γF is given in the plots. The notation F45 from the plot corresponds to a γ45 for flavor, and gives
the local pion operator used in Figure 1. This meson is comprised of just the physical quarks. The
other flavor operators correspond to mesons that have at least one doubler quark and are therefore
suppressed by the filter. We can see the level of suppression of these doubler mesons vary as α is
changed, with the best suppression happening around α = 0.5352.
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Figure 2: Non-local meson correlator with staggered flavor(spin⊗taste) identification γF(γ45 ⊗ ξ45) on
quenched 323× 64 lattices with varying filter parameter α of 0 (top left), 0.5 (top right), 0.5352 (bottom
left) and 0.54 (bottom right).

We can quantify the level of suppression of the doubler mesons by comparing the amplitude
of the exponential decay in the correlators to that of the physical meson state. For the untuned
filter (α = 0.5) from Figure 2 we see a suppression in the amplitude of about 10−2 for the Fi4

states. The suppression of these states improves to about 10−4 at α = 0.54, however there are other
states not shown that have a suppression of only about 3×10−4. With further tuning we can get a
suppression of about 10−4 at α = 0.5352 for all the possible states that would be identified as pions
in the staggered (naive) basis.

The previous results are all for quenched lattices with a plain plaquette action. If we smooth
the lattice with 2 steps of stout smearing [6] we now find a suppression of 3× 10−4 at α = 0.5
and 10−6 at α = 0.50615. From this we see that using a single parameter to tune the suppression
of doublers works very well for valence measurements. However, for valence measurements, the
particular choice of the source will affect the precise value of α for optimal tuning. Tuning the
suppression of doublers in a way that is appropriate for the action in dynamical simulations is
presently under study.

In Figure 3 (left) we plot the decay of the filtered Dirac operator at α = 0.5 in the time direction
for the unsmeared (nstout=0) and 2 step stout smeared (nstout=2) lattices. This is obtained from
applying the Dirac operator to a point source and then taking the magnitude of the result at a point
offset by the given number of sites in the time direction. We can see a steep initial drop at short
distances followed by a long tail due to the incomplete suppression of the doubler modes. The
stout smearing helps suppress the tail. The suppression of the long range tail in the Dirac operator
should correlate with the suppression of the doubler modes from the propagator. For a given lattice
size, the filter would need to be tuned well enough to suppress the effects of the tail to a negligible
level. The exact level of suppression needed for common observables has not been studied yet.

In Figure 3 (right) we show the smallest magnitude eigenvalues of the filtered Dirac operator
with m = 0.01 on a 84 quenched lattice at β = 5.8. The black x’s are for α = 0 and are four-
fold degenerate as expected for the naive Dirac operator. The blue circles are for α = 0.54 and
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Figure 3: Left: Magnitude of filtered (α = 0.5) Dirac operator at a site separated from a point source in the
time direction on quenched 323×64 lattices with a relatively small quark mass (m = 0.001). The triangles
are without smearing and the bursts are with two steps of stout smearing. Right: Smallest eigenvalues of DF

at m= 0.01 for α = 0 (naive fermion limit) and α = 0.54 on a 84 quenched lattice. The α = 0.54 eigenvalues
are scaled to overlap with the α = 0 points. There are 2 real eigenvalues with values of about 0.01 and 0.04.
The larger real eigenvalue is surrounded by 14 other eigenvalues that have moved away from the main curve
of eigenvalues towards larger real values.

are multiplied by an overall scale factor to have the bulk of the eigenvalues fall near the naive
eigenvalue curve. The eigenvalues spread out in the complex plane due to the nonzero mass.
This allows some of the eigenvalues to move towards the set of doubler eigenvalues that should
accumulate with a real part of around 2 (which are not shown here). This configuration can be
identified as having topology |Q| = 1 as seen by the real eigenvalue emerging near 0.01 in the
filtered operator. This behavior of the eigenvalues might allow DF to exhibit a single small real
eigenvalue in the continuum (with careful tuning), in agreement with the index theorem, by shifting
the other 15 doubler eigenvalues to have large real parts. Further study is needed to verify if this is
the case.

We have also explored the possibility of finding improved forms for the filter that can reduce
the effects of doublers with minimal need for tuning. We have considered various filters with more
hops in each direction. One example is to use the Wilson term to form a filter

W = 4− 1
2 ∑

µ

(
Tµ +T †

µ

)
(2.1)

and construct a polynomial from this that is near 1 for small eigenvalues of W and near 0 for larger
eigenvalues. Having an abrupt jump would make the filter more non-local so we tried forms with
a smooth drop from 1 to 0. A 64th order polynomial was able to suppress the the doubler meson
states by at least a factor of 10−6 so that their correlators were too noisy to measure accurately.
However this form of filter noticeably effects the short range behavior of the correlators and is
likely not suitable for general use. We are instead exploring other versions of improved filters.

One might ask if there is a form of the filter at any cost that could give optimal suppression
of the doublers without any tuning necessary. In fact we can easily construct one if we consider a
modified version of the propagator given by

ρ +F
1/2

DN +m
+

1/2
DN +m

F† . (2.2)
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For m = 0 we can choose a filter containing the overlap Dirac operator

F =

[
1

Doverlap
−ρ

]
DN (2.3)

and the propagator will reduce to exactly the overlap propagator. Using the overlap operator in
the filter saves no effort over using an overlap propagator directly, but there may be a cheaper
approximation of this filter that provides an effective approximation of the overlap propagator.
This is an approach we are currently pursuing.

3. Flavor (Taste) Filtered Staggered Fermions

We can apply the same construction presented here to staggered fermions instead of naive. One
simple way is to use a filter of the form F =(1−α)+α(1⊗ξ5) in the staggered spin-taste language
similar to the operator used in staggered-Wilson fermions [7]. This will filter the 4 staggered tastes
down to 2. Unfortunately finding a filter that can produce 1 flavor is problematic since the obvious
candidates break rotational symmetry [8].

4. Summary

We have presented a new form of lattice Dirac operator that satisfies the Ginsparg-Wilson
relation. The corresponding propagator is much cheaper to calculate than for overlap or domain
wall fermions. However it does not completely remove all the doubler states without fine tuning or
an expensive calculation in the filter. The prospects for improving the filter and making the operator
match the overlap operator better with minimal cost are currently being studied. The operator also
appears to be sensitive to the global topology and might be able to reproduce the index theorem.
The same construction can also be applied to the staggered Dirac operator to create an even cheaper
operator that could approach two quark flavors in the continuum limit.
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