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1. Introduction

SU(N) Yang-Mills (YM) theories become volume independent in the large N limit [1]. In the
context of lattice gauge theories it allows, in principle, to use a one-site lattice to obtain results in the
large N limit and infinite volume. If implemented in the most naive way, this proposal was shown
to fail [2], the reason being that the proof of volume independence relies on center symmetry,
while for very small volumes (below the confinement scale), center symmetry is spontaneously
broken. The literature contains several proposals to save the idea of volume independence [2, 3,
4, 5, 6, 7, 8, 9, 10]. In this work we will focus on the twisted reduction approach [3, 4, 11, 5].
The key idea is that the behavior of a field theory at small volumes depends crucially on the choice
of boundary conditions, while the proof of volume reduction does not. In particular it has been
shown recently that a judicious choice of twisted boundary conditions can avoid the spontaneous
breaking of center symmetry. The choice of twisted boundary conditions are encoded in some
phases zµν = exp(2πınµν/N), where nµν is a tensor of integers modulo N.

The work [4] correctly argued that any choice of twist tensor nµν could do the job as long as
it prevents the breaking of center symmetry. The study of this model at weak coupling suggests
the particular choice of taking N a perfect square N = L̂2 and the symmetric twist tensor nµν =

kL̂ where k and L̂ are co-prime. The reason for the notation L̂ is that the Feynman rules and
propagators in the one-site model are identical to the Feynman rules on a lattice with L̂ points
in each dimension, except for some momentum-dependent phases that cancel in all non-planar
diagrams. In this way the O(N2) color degrees of freedom of the gluons are indistinguishable from
the usual space degrees of freedom on a L̂4 lattice in the large N limit.

In this work we will explore the possibility of a non-symmetric twist. We will chose to twist
only one plane (say the x1− x2 plane), while our gauge fields will be strictly periodic in the other
two directions x0,x3. We will argue that in this case the O(N2) color degrees of freedom transform
in space-time degrees of freedom only into the twisted plane x1−x2. This will allow us to reproduce
SU(∞) results in the infinite volume limit by exploring the large N limit of a theory with two short
directions (x1,x2), and two infinite directions (x0,x3). We will call this the 2d TEK model. We will
show that the pattern of spontaneous symmetry breaking will be consistent with this expectation:
the strictly periodic directions x0,x3 must be kept “long” in order to avoid symmetry breaking.

2. Choice of twisted boundary conditions and simulation details

A comprehensive review of the twisted boundary conditions is beyond the scope of this work.
We will stick to the basics and refer the reader to the existing literature [12, 13].

We are going to work in a four dimensional torus T 4 of sides L0× L1× L2× L3. Twisted
boundary conditions are imposed by requiring

Aµ(x+Lν ν̂) = Ων(x)Aµ(x)Ω+
ν (x)+Ων(x)∂µΩ

+
ν (x) , (2.1)

where matrices Ωµ(x) are called twist matrices, and they have to obey the consistency relation

Ωµ(x+Lν ν̂)Ων(x) = zµνΩν(x+Lµ µ̂)Ωµ(x) (2.2)
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N 24 36 40 56
k 7 13 11 23
k̄/N 0.291666. . . 0.305555. . . 0.275 0.303571. . .

Table 1: Parameters of the runs
with zµν being elements of the center of SU(N). They are gauge invariant, and therefore encode
the physical part of the twisted boundary conditions. We are going to use a particular setup of
this general scheme: we twist the plane x1,x2, while the gauge potential will be periodic in the
directions x0,x3. This amounts to the choice

zµν = z∗νµ =

{
exp(2πık/N) µ = 1andν = 2
1 otherwise

. (2.3)

Finally if we choose the integer k to be co-prime with N, it is guaranteed that there is a unique
field configuration that minimizes the action modulo gauge transformations (i.e. the only zero-
modes of the action are the gauge degrees of freedom). This is crucial for our purposes, since
constant configurations that are minima of the action (“torons”) are the source of spontaneous
center symmetry breaking.

It can be proved [12] that any gauge connection compatible with these particular boundary
conditions can be written as

Aa
µ(x)T

a =
1

∏µ Lµ
∑
p̃6=0

Ãµ(x, p̃)eıp̃x
Γ̂(p̃), (2.4)

where Ãµ(x, p̃) are complex functions (not matrices) periodic in x, and Γ̂(p̃) are some well defined
matrices (see [12] for more details). Finally the color-momentum p̃µ is defined as

p̃µ =
2π ñµ

NLµ

, ñµ =

{
0 µ = 0,3
0, . . . ,N−1 µ = 1,2

. (2.5)

Note that the function Ãµ(x, p̃), being periodic in the torus, has naturally momentum modes
quantized in units of 2π/Lµ , but Eq. (2.4) suggests that actually in the directions x1,x2 the unit of
quantization of the momentum is 2π/NLµ (i.e. the gauge field lives in an apparently larger lattice
of size NL in the x1,x2 directions).

We still have to choose k. The experience with the TEK model and symmetric twist suggests
that keeping k = 1 would result in the spontaneous breaking of center symmetry [11]. We will see
that the same holds here, but the advice of [5] (i.e. k/N > 1/9) will also avoid the spontaneous
breaking of center symmetry in our case. Moreover, based on the experience with the symmetric
twist it seems reasonable to keep k̄/N as constant as possible, where k̄ is defined by the condition
kk̄ = 1 mod N. The parameters that we will use in our runs are specified in Table 1. All simulations
are done using standard over-relaxation techniques for SU(N) after introducing auxiliary variables
to linearize the action [14, 15].

3. Pattern of spontaneous symmetry breaking

Pushing the idea of volume independence to the limit, we should be able to obtain continuum
results of SU(∞) in R4 by computing any observable on a L0/a×1×1×L3/a lattice. The N→ ∞
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limit has to be taken at fixed bare coupling, and only later the continuum limit (b→∞ keeping a line
of constant physics). It is easy to understand why center symmetry must be preserved: on an infinite
lattice, open paths are protected from getting an expectation value by gauge invariance. On the other
hand on our reduced lattice, the quantities TrUi(x) for i = 1,2 (i.e. the reduced directions in which
the lattice has only one point) are gauge invariant, although not center invariant. The preservation
of center symmetry in the reduced model can therefore be related with the preservation of gauge
invariance on the infinite lattice. This naturally suggests to use as order parameters to study the
breaking of center symmetry the quantities [11]

Pn =
1
N
〈|TrUn

i (x)|〉; Qn,m =
1
N
〈|TrUn

i (x)U
m
j (x)|〉 . (3.1)

These quantities have to be zero1 for all 0 < n,m < N. The most stringent constraint comes in
fact from P1, and this is the case that we will study in more detail. Figure 1 shows the comparison
of the cases in which center symmetry is spontaneously broken, and cases in which this is not
the case. The points are results of the simulations with the parameters of table 1 and the choice
L0,3/a = N. As the reader can observe, this choice of k (following [5]) avoids the breaking of
center symmetry. On the other hand the same plot shows that the value of k plays a crucial role in
avoiding the breaking of center symmetry: simulations with k = 1 shows this breaking. Also the
choice of which directions are large and which ones are short cannot be arbitrary: changing the
twist from the plane x1−x2 to the plane x0−x3 but keeping the same geometry (i.e. L1,2/a = 1 and
L0,3/a = N) shows again signs of spontaneous symmetry breaking.
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Figure 1: 1
N 〈|TrU1,2(x)|〉 for different values of b and N in a simulation of SU(N) on a N×1×1×N

lattice. Circles represent results obtained with our run parameters (Table 1), and crosses some test
runs: One with k = 1 and another using twisted boundary conditions in the (x0,x3) plane.

4. Comparison with the TEK model with symmetric twist

Following the above discussion, results of the twisted reduced model with different choices
1More precisely, they have to go to zero as N→ ∞.
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N b = 0.355 b = 0.360 b = 0.365 b = 0.370
24 0.546681(11) 0.5592981(82) 0.5702507(67) 0.5801170(77)
36 0.5458441(63) 0.5585279(46) 0.5695444(41) 0.5794575(39)
40 0.5458078(47) 0.5584742(45) 0.5694683(31) 0.5793679(31)
56 0.5455784(56) 0.5582325(52) 0.5692438(46) 0.5791585(47)
∞ (d=2) 0.545326(40) 0.557988(35) 0.569018(17) 0.5789434(64)
∞ (d=4∗) 0.545417(63) 0.558012(12) 0.569021(41) 0.578978(17)
∞ (d=0∗) 0.545336(11) 0.558019(11) 0.569018(4) 0.578959(5)

Table 2: Values of the average plaquette. Values with N = ∞ corresponds to extrapolated values.
Values marked with an ∗ are taken from [16]. See text for more details.

of twist should agree in the large N limit. In this section we will compare the usual one-site TEK
model (which we will call 0d TEK) with symmetric twist with the choice of twist described above
that we called 2d TEK model.

For this preliminary study we will choose as observable to perform the comparison the pla-
quette. Figure 3a shows the extrapolation of our data for the case of b = 0.355. In general the finite
N corrections to any quantity will depend not only on N, but also on the choice of parameters L/a
and k. How to take into account the variations of k,N and L/a in the N→ ∞ extrapolation requires
a deeper understanding of the general structure of the corrections. For the case of the 0d TEK
model, the corrections are parametrized by the quantity k̄/

√
N [13]. This suggests to keep constant

the ratio k̄/N for the case of the 2d twisted reduction. We have chosen our parameters (Table 1)
according to this criteria, but still we can observe some corrections to a perfect 1/N2 scaling. For
example, Figures 2 show the difference between our data points and a linear 1/N2 fit. The solid
lines are the statistical errors of the data points. The dotted lines represent an error bar the includes
an estimate of the uncertainty due to our choices of k,N and L/a. This estimate is computed by
using the χ2/dof to weight the errors of the points in such a way that the fit becomes good (i.e. we
multiply all error bars by a factor such that the χ2/dof becomes 1). An important observation is
that this effect is less important closer to the continuum.

Table 2 summarizes the values of the plaquette. The values at N = ∞ corresponds to extrap-
olations using different setups. The values quoted as d = 4 correspond to the naive extrapolation
to N → ∞ on a 4d lattice with linear size L/a = 16. The values quoted as d = 0 corresponds to
results of the TEK model with symmetric twist. Both these values are taken from the existing
literature [16]. Finally the values at finite N and the extrapolation quoted d = 2 corresponds to
our setup with two large directions and two reduced ones. As the reader can see the quantitative
agreement of the three scenarios is very good.

Fig. 3b shows the average plaquette values for each plane. In our simulations we have 3 types
of planes, one made by short directions (x1− x2), one made by long directions (x0− x3), and four
planes that mix the long and the short directions. The final plaquette values quoted in Table 2 are
the average over all the planes, but since in the infinite volume and infinite N limit all planes are
equivalent, the spread between these values can be used to estimate how far a certain simulation is
from this limit. Figure 3b shows that indeed this is the case: the spread between different planes
gets reduced when N increases. This is a sign that the O(4) invariance of the infinite volume and
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Figure 2: Oscillations around the 1/N2 scaling for b = 0.355 and b = 0.370. Solid error bars are
the statistical errors. The difference between the dotted and the solid error bars are an estimation of
the systematic uncertainty due to the variation of k,N and L/a. Note that this difference is smaller
closer to the continuum.

infinite N limit is restored despite the fact that our simulations all have L1/a = L2/a = 1.
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Figure 3: Average plaquette values for b = 0.355
5. Conclusions

In the context of twisted reduction [3, 4] we have studied the possibility of using a non-
symmetric twist. We have shown that in order to avoid the spontaneous breaking of center symme-
try (a necessary condition for reduction to hold), we have to keep the two strictly periodic directions
large, while the directions on the twisted plane can be made arbitrarily small with a proper choice
of twist tensor. In this sense the choice of twist tensor allows to make color degrees of freedom
indistinguishable from space degrees of freedom in certain directions.

Beyond the theoretical interest in this form of twisted reduction, this choice of twist tensor
might have some advantages. Among them one of the long directions can be naturally interpreted
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as the time direction, allowing to compute masses by looking at the large euclidean time behavior
of correlators (see also [17]). The reader should also note that the cost of matrix multiplications
grows like O(N3), while the computations on a lattice grows with the volume (therefore like (L/a)2

for the non-reduced directions), making this choice of twisted reduction cheaper from a numerical
point of view. Also the lattice structure provides a natural way to perform distributed computations.
The main drawback is that, having to keep the space degrees of freedom in the simulations one can
reach only smaller values of N, and therefore an extrapolation to N→ ∞ is still required. A deeper
understanding of how the choices of k,N and L/a affect the N→ ∞ limit would be desirable.
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