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We discuss the feasibility of applying Diagrammatic Monte-Carlo algorithms to the weak-
coupling expansions of asymptotically free quantum field theories, taking the large-N limit of
the O(N) sigma-model as the simplest example where exact results are available. We use stereo-
graphic mapping from the sphere to the real plane to set up the perturbation theory, which results
in a small bare mass term proportional to the coupling λ . Counting the powers of coupling asso-
ciated with higher-order interaction vertices, we arrive at the double-series representation for the
dynamically generated mass gap in powers of both λ and log(λ ), which converges quite quickly
to the exact non-perturbative answer. We also demonstrate that it is feasible to obtain the coeffi-
cients of these double series by a Monte-Carlo sampling in the space of Feynman diagrams. In
particular, the sign problem of such sampling becomes milder at small λ , that is, close to the
continuum limit.
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1. Introduction

Diagrammatic Monte-Carlo (DiagMC) algorithms [1] which stochastically sample strong- or
weak-coupling expansion diagrams provide a useful alternative to the standard Monte-Carlo al-
gorithms which are based on stochastic sampling of field configurations. In recent years, DiagMC
algorithms attracted a lot of interest from lattice QCD community as a prospective tool for reducing
the sign problem in lattice QCD simulations at finite chemical potential [2, 3]. So far, all attempts
to apply DiagMC to non-Abelian lattice gauge theories are based on the few lowest orders of the
strong-coupling expansion of the QCD partition function. This approach turns out to be very ef-
ficient, since already the lowest order of strong-coupling expansion captures quark confinement,
a fundamental feature of QCD. However, these algorithms become in general inapplicable as one
approaches the continuum limit, since one has to take into account more and more terms in the
strong coupling expansion.

Unfortunately, up to now no efficient ways of automated and systematically improvable
stochastic sampling of strong-coupling expansions in lattice systems with SU (N)-valued degrees
of freedom (including lattice QCD) are known. Moreover, one can expect that at large orders of
strong-coupling expansion some terms in the series become negative, thus leading to a (real) sign
problem in DiagMC. This sign problem should become quite severe close to the continuum, where
large factors proportional to negative powers of coupling should cancel to yield a small result close
to unity (e.g. for the mean plaquette).

In this situation it seems tempting to devise DiagMC algorithms which are based on the con-
ventional weak-coupling perturbation theory, where diagrammatic rules are comparatively easy to
obtain. Before turning to real simulations of lattice field theories with non-Abelian degrees of free-
dom , in these Proceedings we discuss the feasibility of such approach on the simplest example of
the exactly solvable O(N) sigma-model on the lattice in the large-N limit. At the leading order
in 1/N expansion, only Feynman diagrams of “cactus” topology contribute to the weak-coupling
expansion of this model, which allows one to obtain high-order expansion coefficients by a sim-
ple recursive procedure. Our aim here is to study whether these coefficients could be in principle
obtained by Monte-Carlo sampling in the space of Feynman diagrams.

Having started with such a motivation, we immediately face the following conceptual problem:
in asymptotically free QFTs the mass gap is typically non-perturbative and has the form m2 ∼
e−β0/λ , where β0 is the zeroth order term in the expansion of the beta-function and λ is the t’Hooft
coupling constant. This statement is true also in the large-N limit, where the number of Feynman
diagrams which contribute at a given order of 1/N expansion is known to grow exponentially with
diagram order. Now if at the leading order of the 1/N expansion the contribution of all diagrams is
finite, the result of summation over them should be analytic in λ at least in some vicinity of λ = 0.
Thus the only way in which the non-perturbative scale can emerge is through IR divergences in
some of the diagrams. However, DiagMC simulations would be problematic if not impossible with
such divergences.

In these Proceedings we show that certain parameterizations of field variables remove IR di-
vergences in a self-consistent way even from “undressed” Feynman diagrams by introducing a
small bare mass proportional to the coupling λ . The resulting series, however, no longer have a
conventional form of power series in λ , but are rather double series both in λ and in logλ . Here we
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take a closer look at the structure of such series and demonstrate numerically that they converge to
the exact nonperturbative answer. We also show that the coefficients of these series can be obtained
by a Monte-Carlo sampling in the space of Feynman diagrams, with the sign problem becoming
milder in the continuum limit.

2. Large-N O(N) sigma-model in stereographic coordinates

Field variables in the O(N) sigma model are N-component unit vectors nax, a = 0 . . .N − 1
attached to the sites of the two-dimensional square lattice, which we label by x. The Euclidean
partition function is given by

Z =
∫

Dnx exp

(
− N

2λ ∑
x,y,a

Dxynax nay

)
, (2.1)

where Dx,y = 4δx,y − ∑
µ=1,2

δx,y+µ̂ − ∑
µ=1,2

δx,y−µ̂ is the lattice Laplacian. Superficially, in the weak-

coupling limit λ → 0 all the vectors nx should align in one direction, thus spontaneously breaking
the global O(N) symmetry of the model and leaving N −1 massless Goldstone modes in the spec-
trum. However, by virtue of the Mermin-Wagner theorem such spontaneous symmetry breaking
cannot occur in two dimensions, and the O(N) symmetry remains unbroken for all values of λ .

The standard way to arrive at the weak-coupling perturbative expansion is, however, to expand
around the minimum-energy configuration with all nx aligned in one direction, say, in the direction
with a = 0. In order to perform such expansion, we need to introduce some coordinates ϕi x, i =
1 . . .N − 1 parameterizing the vectors nx, such that ϕi x = 0 corresponds to the minimum-energy
configuration with nx = const. In this work, we use the stereographic mapping

n0x =
1− λ

4 ϕ 2
x

1+ λ
4 ϕ 2

x
, ni x =

√
λ ϕi x

1+ λ
4 ϕ 2

x
, ϕ 2

x ≡ ∑
i

ϕi xϕi x (2.2)

from the whole real space RN−1 to the whole sphere SN . The integration measure on SN in terms
of stereographic coordinates ϕ reads

Dnx = Dϕx

(
1+

λ
4

ϕ 2
x

)−N

. (2.3)

Using (2.2) and (2.3), we can express the partition function as an integral over the fields ϕx. In
order to carry out the perturbative expansion, it is convenient to explicitly separate the “free” part
of the action which is quadratic in ϕx from the interaction part, which contains higher powers of ϕx

multiplied by some positive powers of the coupling constant λ :

Z =

∫
Dϕx exp

−N log
(

1+
λ
4

ϕ 2
x

)
− N

2λ ∑
x,y

Dxy

(
1− λ

4 ϕ 2
x

)(
1− λ

4 ϕ 2
y

)
+λ (ϕx ·ϕy)(

1+ λ
4 ϕ 2

x

)(
1+ λ

4 ϕ 2
y

)
=

=
∫

Dϕx exp

(
−1

2 ∑
x,y

(
Dxy +

λ
2

δxy

)
ϕx ·ϕy + SI [ϕ ]

)
,

SI [ϕ ] =
+∞

∑
k,l=0
k+l ̸=0

(−1)k+l λ k+l

2 ·4k+l ∑
x,y

Dxy
(
ϕ 2

x
)k (ϕ 2

y
)l
(ϕx ·ϕy)+

+∞

∑
k=2

(−1)k−1 λ k

4k k ∑
x

(
ϕ 2

x
)k
, (2.4)
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where ϕx · ϕy ≡ ∑
i

ϕi x · ϕi y and in the last expression for SI [ϕ ] we have dropped the summands of

the form ∑
x,y

Dxy
(
ϕ 2

x
)k (ϕ 2

y
)l which are effectively zero in the large-N limit by virtue of factorization

and translational invariance. We thus see that due to the nontrivial integration measure in terms of
the fields ϕx the bare “mass term” λ/2 appears in the quadratic part of the action.

Having written the partition function and the action in the form (2.4), now we can regard
our O(N) sigma-model simply as a large-N quantum scalar field theory with infinitely many in-
teraction vertices. The standard way to the exact solution of such theories is to consider the
Schwinger-Dyson equations, which in the large-N limit reduce to a single equation on the two-
point correlation function ⟨ϕx · ϕy ⟩. All correlators with larger number of field operators re-
duce to the products of ⟨ϕx · ϕy ⟩. Using the momentum-space representation of the two-point
function ⟨ϕx · ϕy ⟩ =

∫ d2 p
(2π)2 G(p) eip(x−y), where integration goes over the square Brillouin zone

p1, p2 ∈ [−π,π], we can write the Schwinger-Dyson equations as

G−1 (p) = D(p)+σ0 −D(p)
ξ (2+ξ )
(1+ξ )2 − λ

2
ξ

1+ξ
− λ

2
1

(1+ξ )3 [DG]xx , (2.5)

where D(p) = 4sin2 (p1/2) + 4sin2 (p2/2) is the momentum-space representation of the lattice
Laplacian in (2.1) and we have denoted σ0 ≡ λ/2 and ξ ≡ λ

4 ⟨ϕ 2
x ⟩= λ

4
∫ d2 p

(2π)2 G(p) and [DG]xx =∫ d2 p
(2π)2 D(p) G(p). The notation σ0 ≡ λ/2 is introduced to facilitate the formal counting of

the positive powers of λ associated with the vertices (rather than lines) of the Feynman diagrams,
which we perform in the next Section.

From the form of the equation (2.5) one can immediately conclude that the momentum-space
two-point function G(p) should have the form of the free scalar field propagator with the wave-
function renormalization factor z2 (λ ) and the self-energy σ (λ ): G(p;λ ) = z2(λ )

D(p)+σ(λ ) . From the
Schwinger-Dyson equations (2.5) one can readily deduce the following equations for z and σ :

σ = σ0z2 − λ
2

z2 +
λ
2

zσ I0 (σ) , z = 1+
λ
4

z2I0 (σ) , (2.6)

where we have defined I0 (σ) =
∫ d2 p

(2π)2
1

D(p)+σ =− 1
4π log

( σ
32

)
(1+O(σ)) . The last equality holds

for sufficiently small values of σ , and we will use the latter expression with O(σ) terms omitted.
Substituting σ0 = λ/2 into the equations (2.6), we obtain the following exact solutions for z(λ )
and σ (λ ):

z(λ ) = 2, λ I0 (σ) = 1 ⇒ σ (λ ) = 32exp
(
−4π

λ

)
, (2.7)

which explicitly demonstrates that the dynamically generated mass term m(λ ) =
√

σ (λ ) is non-
perturbative in the coupling constant λ .

3. Formal perturbative expansion using stereographic coordinates

The standard way to appear at the perturbative expansion is to expand the exponent of the
interacting part of the action in power series and to explicitly integrate the resulting polynomials of
field variables with the Gaussian weight containing the free part of the action. .
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In this work, we regard the term λ
2 ϕ 2

x as a part of the free action, so that the free propagator
becomes massive and thus IR divergences in perturbation theory are cured. In order to avoid any
ambiguities in power counting, let us for the moment forget about the relation between σ0 and λ
in the Schwinger-Dyson equations (2.5). We are now looking for the solution in form of the formal
power series in λ :

z(λ ) =
+∞

∑
k=0

zk (σ0)λ k, σ (λ ) =
+∞

∑
k=0

σk (σ0)λ k, (3.1)

with z0 = 1. From the above equations one can recursively express zk (σ0) and σk (σ0) in terms of
all lower-order coefficients zl (σ0), σl (σ0) with l < k. Such recursion is mathematically equivalent
to the summation of all the Feynman diagrams of a given order which contribute to the two-point
function G(p). In the process of recursion, we still treat σ0 as a parameter independent of λ .
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Figure 1: On the left: Dependence of the coefficients σk,l in the double series (3.3) on the truncation order
kmax in the formal power series (3.1). In the center: result of summation over Feynman diagrams without
taking into account their signs as a function of the truncation order kmax. On the right: effect of sign
cancellations in the coefficients σk of the formal power series (3.1).

The coefficients zk (σ0) and σk (σ0) are now finite-degree polynomials in σ0, σ−1
0 and log

(σ0
32

)
which can be represented in the following general form:

σk (σ0) =
k

∑
l=0

(
− log

(σ0

32

))l
(

min(l,1)

∑
i=imin(k−l−2)

ck,l,iσ i
0

)
, imin ( j) =


− j, j ≥ 0;
0, j =−1;
1, j =−2.

, (3.2)

where each monomial term at fixed k, l, i corresponds to a certain “cactus”-like diagram.
We obtain the coefficients σk (σ0) up to some finite order kmax using automated symbolic

algebra and truncate the series (3.1) by summing over all orders k up to kmax. After that, we
substitute σ0 → λ/2. As a result, we obtain the truncated double series in powers of both λ and
log(λ ) of the form

σ (λ ,kmax) =
kmax

∑
l=0

(
− log

(
λ
64

))l kmax+min(l,1)

∑
k=min(l+2,kmax)

σl,kλ k, (3.3)

and similarly for z(λ ,kmax). It is important to stress that since upon the substitution σ0 → λ/2
the coefficients σk (σ0) contain also negative powers of λ , even coefficients σk (σ0) with large k
contribute to the coefficients σl,k with small k in the expansion (3.3), including the ones with k = 0.
In order to check whether the coefficients σk,l have some well-defined limit as kmax → ∞, on the
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leftmost plot in Fig. 1 we show the dependence of some of these coefficients on 1/kmax at fixed
k and l. It seems that at least the few lowest-order coefficients do converge to certain limits at
kmax → ∞.

Next, we check how well do the series (3.1) truncated at the finite order kmax approximate the
exact results (2.7). To this end on Fig. 2 we compare the results of the summation of truncated series
for the renormalization factor z(λ ,kmax) and the renormalized mass m(λ ,kmax) =

√
σ (λ ,kmax)

with exact results (2.7). We see that the dynamically generated mass m(λ ,kmax) converges quite
quickly to the exact result, and linear extrapolation to 1/kmax = 0 is enough to reproduce it within
several percents. On the other hand, for the renormalization factor z(λ ,kmax) the convergence to
the exact answer z(λ ) = 2 is not so fast, and linear extrapolation from finite kmax ∼ O(10) is not
enough to reproduce it with sufficiently good precision.
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Figure 2: Dependence of the renormalization factor z(λ ,kmax) (on the right) and the renormalized mass
m(λ ,kmax)≡

√
σ (λ ,kmax) (on the left) on the truncation order kmax in the formal power series (3.1). Points

at 1/kmax = 0 are the results of linear extrapolation from the numerical results with 7 largest values of kmax.
Arrows point to exact results (2.7).

Let us now imagine, that we are not aware of the exact solution (2.7), and we try to find the
coefficients zk (σ0) and σk (σ0) in (3.1) by incorporating a generic DiagMC algorithm. Namely,
we sample the bare Feynman diagrams with the probability proportional to their weight. For our
model, the weights of individual “cactus”-like Feynman diagrams correspond to the coefficients of
the monomial terms in (3.2). Since in our case these coefficient can be both positive and negative,
for Monte-Carlo sampling we could take the absolute value of the diagram weight and treat the
sign by reweighting. We denote the sum in (3.2) with all coefficients ck,l,i taken by absolute value
as σ ′

k (σ0). Inserting the coefficients σ ′
k (σ0) into the series (3.1) instead of σk (σ0) and restricting

the summation over k to k ≤ kmax, we obtain the function σ ′ (λ ,kmax).
We first check whether the sum of the absolute values of diagram weights is finite in the limit

kmax → ∞, so that individual weights can be interpreted as probabilities. To this end, on the central
plot on Fig. 1 we plot σ ′ (λ ,kmax) as a function of kmax. This plot indicates that σ ′ (λ ,kmax) has
no finite limit at kmax → ∞, and the resulting double series are divergent unless one takes into
account sign cancellations. In practice, however, this divergence can be quite easily circumvented
by separately sampling the diagrams of different order and subsequent explicit summation.

The next question is then how strong are cancellations between same-order diagrams with
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positive and negative weights. To answer this question, on the rightmost plot on Fig. 1 we show
the ratios of the coefficients σk (σ0) (where diagram weights retain their sign) to σ ′

k (σ0) (where
the diagram weights are summed by absolute value). If this ratio is small, then sign cancellations
are important. We see that the sign cancellations are quite important for high orders k, where the
absolute values of σk (σ0) and σ ′

k (σ0) differ two or three orders of magnitude. However, at small
values of λ the sign cancellations become milder and only weakly depend on the diagram order
k. Since small values of λ correspond to the physically most interesting continuum limit, this is a
very promising observation.

4. Conclusions

In these Proceedings, we have considered the weak-coupling perturbative expansion of the
O(N) sigma-model in the large-N limit, taking the practical perspective of sampling Feynman
diagrams by a generic DiagMC algorithm. In order to set up the perturbative expansion, we have
used the stereographic mapping. As a result, bare propagators have acquired a small bare mass term
proportional to the coupling λ . Counting only the positive powers of λ associated with interaction
vertices, we have arrived at the double series representation which involves powers of both λ
and log(λ ). We have numerically checked the convergence of these series to the exact results,
which turned out to be particularly fast for the dynamically generated mass gap and slower for the
renormalization factor. Moreover, we have demonstrated that it is feasible to obtain the relevant
series coefficients by a fictitious Monte-Carlo sampling in the space of bare Feynman diagrams.
Interestingly, the sign problem which appears in such a sampling becomes milder as we approach
the continuum limit at λ → 0. These observations are very promising for further applications
of DiagMC algorithms to asymptotically free field theories, most notably for the U (N) principal
chiral models and for non-Abelian gauge theories on the lattice.
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