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We have proposed a lattice SUSY formulation which we may call super doubler approach, where

chiral fermion species doublers and their bosonic counter parts are either identified as super part-

ners or truncated by chiral conditions. We claim that the super symmetry is exactly kept on the

lattice. However the formulation is nonlocal and breaks lattice translational invariance. We argue

that these features cause no fundamental difficulties in the continuum limit. Although a naive

version of this formulation breaks associativity of the product of fields we have found a modified

super doubler approach that recovers the associativity and is applicable to super Yang-Mills the-

ory. It turns out that this formulation is essentially equivalent to the continuum formulation and

thus keeps all the symmetry exact even at a finite lattice constant. Inspired by this formulation we

propose a non-local lattice field theory formulation which is free of chiral fermion problem and

has the same exact lattice symmetry as continuum theory.
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1. Introduction

Although realization of exact SUSY on the lattice has a long history it is uncompleted subject[1].
We hope to find the clue for a new field theory formulation by understanding the fundamental dif-
ficulties to realize exact lattice SUSY. A part of the exact lattice SUSY of extended algebra was
realized and extensively investigated[2, 3]. The link approach of super Yang-Mills theory was also
proposed[4]. It turned out this formulation needs to be non-commutative and has Hopf algebraic
symmetry[5].

There are two major difficulties to realize exact supersymmetry on the lattice:
1) Lattice counter part of differential operator, a difference operator, in the SUSY algebra does not
satisfy Leibniz rule which causes non-vanishing nature of surface terms.
2) Naive fermion formulation of chiral fermion generates fermion species doublers which breaks
the balance of boson and fermion number. Any other fermion formulation may generate obstacles
for realization of exact lattice SUSY due to the different treatment of fermions and bosons.

Within the framework of locality, lattice translational invariance, and associativity, it was
claimed that Leibniz rule of difference operator cannot be realized[6]. One may thus need to
give up some of these principles to realize exact lattice SUSY. In fact it was pointed out that SLAC
derivative would be the only solution compatible with the lattice SUSY version of Ginsparg-Wilson
relation[7]. It is well recognized that SLAC derivative is nonlocal derivative. It has also been
pointed out that this type of nonlocality does not cause fundamental problem for the realization of
SUSY on the lattice[8, 9] Here we investigate a formulation to accept nonlocality but keep "exact
SUSY" on the lattice.

In order to avoid chiral fermion species doublers we may introduce Wilson term and ask if
one can obtain lattice SUSY invariance perturbatively. It was noticed that bosons also need cor-
responding terms to the Wilson terms of fermions[10, 11]. Modern resolution of chiral fermion
problem for QCD may give a suggestion that Ginsparg-Wilson fermion would solve lattice SUSY
fermion treatment. It was pointed out that Majorana condition has a difficulty of compatibility with
Ginsparg-WiIson relation[12]. After all in these formulations fermions are formulated differently
from bosons the realization of exact lattice SUSY is difficult.

Here we investigate a formulation of exact lattice SUSY invariant formulation within a frame-
work of nonlocal field theory.

2. Modified lattice momentum conservation

In order to realize lattice SUSY invariance it was suggested in the first pioneering paper by
Dondi and Nicolai[1] that lattice momentum conservation could be modified as follows:

δ (p1+ p2+ · · ·)−→ δ
(

sinap1

a
+

sinap2

a
+ · · ·

)
, (2.1)

wheresinapµ
a is the momentum representation of symmetric difference operator. We claim that this

replacement is not enough to solve the second species doubler problem 2) mentioned the above.
Let us consider what the meaning of this replacement is. We usually identify the lattice

momentum−π
a ≤ pµ ≤ π

a as an angular variable identified from the momentum representation
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of difference operatorsinapµ
a . This lattice momentum approaches to the continuum momentum

−∞ < p̂µ < ∞ in the continuum limita → 0. Since the lattice momentum is an angular variable
it has different topological nature from the continuum momentum, which is the origin of chiral
fermion species doubling. The most important advantage of this identification is that discrete lat-
tice translation invariance is kept with this choice. We can, however, argue later that lattice trans-
lational invariance is not the mandatory requirement for the recovery of Poincare invariance in the
continuum limit. Then we can equally well identify a lattice momentum∆(pµ) as an corresponding
lattice momentum if∆(pµ)→ pµ (a→ 0).

In contrast to the choice of∆(p) = sinap
a , what could be the best choice to solve the second

problem 2) at the same time ? Coordinate representation of this symmetric difference operator
which is Hermitian has the following well known form:

i∆s f (x) = i
f (x+a)− f (x−a)

2a
→ sinap

a
f̃ (p). (2.2)

If we identify this as the translation generator the minimal unit of translation should be identified
as two lattice unit. This point of view can be also understood by recognizing that species doubler

state is a real physical state. We may define a new momentum for species doubler as
sina( π

a−p′)
a ∼

p′ (a→ 0). The coordinate representation of the corresponding field isψ̃
(π

a − p′
)
→ (−1)

x
a ψ(−x)

wherex = na (n ∈ Z) is lattice coordinate. Translational invariant species doubler state is thus
(−1)nconst. which needs two lattice unit for translation invariance.

The above observation suggests us a picture that we should construct a lattice formulation
which leads single lattice as a minimal translation. In other words we need to introduce half lattice
coordinates. Then what is the half lattice translation generator ? A half lattice translation can be
nicely understood as supersymmetry translation, which is compatible with the following simplest
SUSY algebra:{Q,Q}= 2P= 2i∆s, wherei∆s=

2
a sin pa

2 is the momentum representation of single
lattice translation generator whileQ is the half lattice translation generator. Our first step proposal
for ∆(p) is

∆(p) =
2
a

sin
pa
2

(2.3)

We claim that this choice of∆(p) solves two lattice SUSY difficulties 1) and 2) at the same time
for non-gauge SUSY models where the following replacement need to be introduced:

δ (p1+ p2+ · · ·)−→ δ (∆(p1)+∆(p2)+ · · ·). (2.4)

In fact we have found momentum representation of lattice SUSY algebra for D=1,2 and N=2
Wess-Zumino models. In one dimension (D=1) we introduce bosonic and fermionic composite
fields Φ(p) and Ψ(p) each of which includes original field and species doubler fields for both
bosonic and fermionic composite fields. SUSY transformation of the composite fields are

Q1Φ(p) = i cosap
4 Ψ(p), Q1Ψ(p) =−4i sinap

4 Φ(p), (2.5)

Q2Φ(p) = cosap
4 Ψ(2π

a − p), Q2Ψ(2π
a − p) = 4sinap

4 Φ(p), (2.6)

which satisfy the following N=2 twisted SUSY algebra:

Q2
1 = Q2

2 = 2sin
ap
2
, {Q1,Q2}= 0, (2.7)
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where the dimensionless supercharges are introduced. We found the following action which is
invariant under the above lattice SUSY algebra[13]:

S(n) = g(n)0 an 4
n!

∫ 3π
a

− π
a

dp1
2π · · · dpn

2π 2πδ
(
∑n

i=1sinapi
2

)
×G(p1, p2, · · · , pn)

[
2sin2 ap1

4 Φ(p1)Φ(p2) · · ·Φ(pn)+ (2.8)

+n−1
4 sina(p1−p2)

4 Ψ(p1)Ψ(p2)Φ(p3) · · ·Φ(pn)
]
,

where dimensionless∆(pi) = sinapi
2 is chosen as conserved lattice momentum of (2.4) in this ex-

pression. Forn= 2 this action gives kinetic and mass terms of one dimensional N=2 Wess-Zumino
action. Here we identify the species doublers as super partners for boson and fermion:

Φ(p) = a−
3
2 ϕ(p), Ψ(p) = a−1ψ1(p),

Ψ(
2π
a

− p) = ia−1ψ2(p), Φ(
2π
a

− p) =−a−
1
2

4
D(p). (2.9)

Similarly for D=N=2 lattice SUSY the kinetic terms of Wess-Zumino action can be found as:

SK = 4
∫ π

a

− π
a

dp+dp−dq+dq−δ (p++q+)δ (p−+q−)
[
−4Φ̄(p)sin

aq+
2

sin
aq−

2
Φ(q)

−F̄(p)F(q)+2Ψ̄2(p)sin
aq+

2
Ψ2(q)+2Ψ̄1(p)sin

aq−
2

Ψ1(q)
]
, (2.10)

where for the kinetic term the proposed momentum conservation coincide with the standard lattice
momentum conservation. The interaction terms for the Wess-Zumino action can be given by

Sn =
∫ n

∏
j=1

d2p jVn(p)n

[
iF (p1)

n

∏
j=2

Φ(p j)+(n−1)Ψ2(p1)Ψ1(p2)
n

∏
j=3

Φ(p j)

]
+h.c.,

whereVn(p) includes sine momentum conservation:

Vn(p) = a2n gn δ (2)
(

sin
ap1

2
+sin

ap2

2
+ · · ·+sin

apn

2

)
. (2.11)

Chiral representation of D=N=2 SUSY algebra for the Wess-Zumino model can be fully derived
with momentum representation of difference operator as momentum generator. See the details in
[14].

Chiral conditions impose the following relations for composite field of bosons and fermions
ΦA, each of which include 4 species doublers:

ΦA(p+, p−) = ΦA(
2π
a

− p+, p−) = ΦA(p+,
2π
a

− p−) = ΦA(
2π
a

− p+,
2π
a

− p−). (2.12)

For other composite fieldsF(p),Ψi(p) similar chiral conditions are needed. The anti-chiral fields
carrying bar need similar relations. In this way four species doubler degrees of freedom is all
truncated by the chiral conditions. It is interesting to note that the coordinate representation of the
first equality in eq.(2.12) is given as:

ΦA(x+,x−) = (−1)
2x+

a ΦA(−x+,x−), (2.13)
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where the second and third equality can be given similarly. This relation shows that we have
introduced twice larger degrees of freedom by introducing half lattice structure but it is truncated
by half by the chiral condition for each dimension. It is thus sufficient to consider positive lattice
coordinate for each dimensional direction.

Since the species doubler degrees are killed now we can identify each composite fields as
component fields:

a2Φ(p)→ ϕ(p), a
3
2 Ψi(p)→ ψi(p), aF(p)→ f (p). (2.14)

In this way for the treatment of species doubler degrees of freedom there are two possible ways:
A) Identify the species doubler fields as super partners as in one dimensional treatment in eq. (2.9).
B) Kill the all the species doubler degrees of freedom by chiral conditions as in two dimensional
treatment in eq.(2.12).

3. Recovery of Leibniz rule and associativity

We claim that the actions given above satisfy N=2 exact lattice SUSY algebra in one and two
dimensions. How do we understand that the problem of difference operator not satisfying Leibniz
rule can be realized in the coordinate space ? Convolution of two product fields in the momentum
space corresponds to the normal product in the coordinate space:

(F ·G)(p) =
∫

d2p1d2p2F(p1)G(p2)δ (2)(p− p1− p2) −→ (F ·G)(x) = F(x)G(x). (3.1)

Correspondingly the change of the momentum conservation into sine of the momentum leads to
define a new product:

(F ∗G)(p) =
∫

d2p1d2p2F(p1)G(p2)δ (2)(∆(p)−∆(p1)−∆(p2)) −→ (F ∗G)(x) = F(x)∗G(x).

(3.2)
If we now operate the momentum representation of difference operator to the product we naturally
lead Leibniz rule in the momentum representation due to the new momentum conservation:

∆(p) (F ∗G)(p)=
∫

d2p̂1d2p̂2 [∆(p1)F(p1) G(p2)+F(p1)∆(p2)G(p2)]δ (2)(∆(p)−∆(p1)−∆(p2).

(3.3)
The coordinate representation of this expression tells us that difference operator∂̂x satisfy the
Libniz rule on the new∗−product:

∂̂x(F ∗G)(x) =
(

∂̂xF(x)
)
∗G(x)+F(x)

(
∂̂x∗G(x)

)
. (3.4)

Unfortunately this new∗−product is unavoidably nonlocal[6]. The explicit expression of the
∗−product in the coordinate space can be found in [13, 14].

It turns out, however, that this∗−product is not associative due to the limited range of|∆(p)|.

((Φ3∗Φ2)∗Φ1)(p) ̸= (Φ3∗ (Φ2∗Φ1))(p) (3.5)

In order to formulate gauge theory associativity is crucial since gauge transformation is non-linear,
which can be seen from the following manipulation proving gauge invariance:

Φ†(x)∗Φ(x)→ (Φ†(x)∗e−α(x))∗ (eα(x)Φ(x)) ̸= Φ†(x)∗ (e−α(x)eα(x))Φ(x) = Φ†(x)∗Φ(x). (3.6)
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We have, however, found an interesting solution of the choice for∆(p)=∆G(p) which satisfies
associativity:

∆G(p) =
1
a

log
1+sinap

2

1−sinap
2

, (3.7)

where∆G(±π
a) = ±∞. The coordinate representation of this differential operator∆G has the fol-

lowing nice but non-local form:

∆GΦ(x) =
2
a

∞

∑
k=1

(−1)k+1

2k−1

[
Φ
(

x+
(2k−1)a

2

)
−Φ

(
x− (2k−1)a

2

)]
(3.8)

Replacing the∆(p) in eq.(3.2) by ∆G(p) we can define yet new⋆−product which satisfies
associativity:

((Φ3⋆Φ2)⋆Φ1)(p) = (Φ3⋆ (Φ2⋆Φ1))(p). (3.9)

By the use of this formulation in principle we can formulate super Yang-Mills theory since lattice
SUSY and gauge invariance could be assured.

Since the lattice momentum conservation is changed as in eq.(2.4) discrete lattice translational
invariance is lost. However we claim that the invariance of the action for Poincare invariance can
be assured by the corresponding invariance by

δεΦA(p) =−iε∆G(p)ΦA(p), (3.10)

where newly defined∆G(p) can be identified as a translation generator.

4. Proposal of a new lattice field theory formulation

Based on the formulation of employing∆G(p) as a differential operator we propose to define
a new lattice field theory formulation which is equivalent to continuum theory of paying price of
non-locality complication:
1) Introduce a half lattice structure. 2) Go to the momentum representation of a continuum formu-
lation and replace all derivative operators by∆G(p) and the momentum conservation in (2.4) with
∆(p) = ∆G(p). 3) Kill the species doublers degrees of freedom by the equations as in (2.12). In
the coordinate representation consider only the first quadrant of lattice space and replace all the
product by⋆−product.
In this way we can construct non-local lattice field theory which has exact lattice symmetries of
continuum theory and no chiral fermion problem. In fact this non-local lattice theory is equivalent
to the continuum theory.

5. Conclusion and Discussions

We have proposed a lattice SUSY formulation which has the exact lattice SUSY especially
for D=1,2 and N=2 Wess-Zumino models. Even though associativity is broken in these cases exact
lattice SUSY is kept since SUSY transformation is linear in fields. Non-associativity does not
sacrifice exact lattice SUSY for non-gauge cases. In fact exact SUSY has been confirmed even at
the quantum level[15]. We have proposed a new lattice SUSY formulation by the use of∆G as a

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
3
0
0

Super Doubler Approach for Lattice SUSY Noboru Kawamoto

differential operator. It has the same exact lattice symmetries with continuum theory. In fact the
formulation is non-local lattice field theory and equivalent to the continuum theory. In a sense this
formulation presents "perfect action"[16] of lattice SUSY. One may wonder if this lattice theory
is regularized or not. We consider that the lattice SUSY formulated by∆G is not regularized even
though it is a lattice theory with a lattice constant introduced. This is a puzzling situation. If the
non-local nature of the formulation is serious the formulation may be useless. We can,however,
show that the locality of interactions is recovered in the continuum limit for both∆(p) = sinap

2 and
∆G(p) formulations. The details will be given elsewhere[17].
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