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1. Introduction

The gradient flow equation has attracted much attention recently. The equation was originally
proposed in the context of the SU(N) (lattice) gauge theory [1], [2] , [3] which was later extended
to QCD [4]. The gradient flow has the attractive properties that the expectation value of any gauge
invariant local operators in terms of the flowed field are always finite without additional renormal-
ization. In view of this niece property, it is natural question of consider possible extensions of this
method for other theories.

However, when we extend the method of the gradient flow to the other systems, we encounter
a problem. If the symmetry of the system is nonlinearly realized, the naive gradient flow equation,
which means that the derivative of the flowed field is just given of the variation of the action over
the field, does not respect the symmetry.

In this proceedings, we report our proposal for the generalization of the gradient flow equation
with nonlinearly realized symmetry and our study on its application to some examples of field
theories. Using this equation, we can construct the various type of gradient flow equation for
quantum field theories whose symmetry is non-linearly realized. We then apply the generalized
gradient flow equation to two systems. One is the N = 1,d = 4, SU(N) super Yang-Mills theory
[5], and the other is the d = 2,O(N) nonlinear sigma model [6]. In the case of the super Yang-Mills
theory, we construct a natural extension of the gradient flow using the superfield formalism. With
a special choice of the modification term in the gradient flow equation, we obtain a closed equation
within the Wess-Zumino(WZ) gauge. We also find an exact solution of the generalized gradient
flow equation for the O(N) nonlinear sigma model in the large N limit, which shows the finiteness
of the two point function in terms of the flowed field non-perturbatively.

2. Generalized Gradient Flow Equation

The generalized gradient flow equation proposed in Ref. [5] keeps the nonlinearly realized
symmetry of the system, in other words, the time evolution and the symmetry transformation com-
mute. Let us first define the norm of the variation of fields δϕ(x) as

||δϕ ||2 =
∫

dDxgab(ϕ(x))δϕa(x)δϕb(x), a = 1,2, · · · ,M, (2.1)

where M is the number of components of the field and gab(ϕ(x)) is the metric in the functional
space. The metric should be chosen in such a way that the norm is invariant under the symmetry
transformation. The generalized gradient flow equation is then provided as

∂φ a
t (x)
∂ t

= −gab(φt(x))
δS(ϕ)
δϕb |ϕ→φ (2.2)

where the gab is inverse matrix of the metric gab. We note that for linearly realized symmetry, the
metric gab is trivial so that the generalized gradient flow equation reduces to the naive gradient flow
equation.

Whether one can find an appropriate metric or not for a given field theory is quite nontrivial,
but there are a few examples where one can find the metric explicitly as we explain in Sec.3 and
Sec.4.
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3. N = 1, d = 4, SU(N) Super Yang-Mills Theory

3.1 Gradient Flow Equation of Super Yang-Mills Theory

The original gradient flow equation for SU(N)Yang-Mills theory [3] is given by

∂Ba(x)
∂ t

= −δ ab δSYM

δBb(x)
+α0δBa(x), (3.1)

Bµ |t=0 = Aµ . (3.2)

The first term of the RHS of eq. (3.1) is the gradient of the Yang-Mills action. The second term
is the modification term introduced to suppress the gauge degrees of freedom. This term has to be
proportional to gauge transformation so that it does not affect physical quantities.

We extend this equation to supersymmetric one by the following replacement of the Yang-
Mills gradient flow equation.

• Yang-Mills action SYM → Super Yang-Mills action SSYM, where

SSYM = −
∫

d4x
∫

d2θTr[W αWα ]+h.c., (3.3)

Wα = −D̄D̄(e−V DαeV ). (3.4)

• Gauge field Aµ(x) → Superfield V (z), where the argument z stands for super coordinate
(x,θ , θ̄).

• New gauge field Bµ(t,x) → New superfield V (t,z). The component of superfield V is
defined by V = {c,χ, χ̄,m,m∗,vm,λ , λ̄ ,d}. We impose the initial condition V (0,z) = V (z).

• Gauge transformation δBa(x) → Super gauge transformation δV a(x) defined by δV =
LV /2 · [(Φ−Φ†)+ coth(LV /2) · (Φ+Φ†)], where Φ is a chiral superfield.

• Metric δ ab → gab(V )

Then we obtain the general form of the supersymmetric extension of the gradient flow equation,

∂V a

∂ t
= −gab(V )

δSSYM

δV b +α0δV a, (3.5)

where

gab(V ) = −4Tr
[(

LV

1− e−LV
·T a
)(

LV

1− e−LV
·T b
)]

, (3.6)

LV · = [V , ·]. (3.7)

Substituting the explicit forms of gab(V ), δSSYM
δV b into eq. (3.5), δVa, we obtain the gradient flow

equation in the matrix form as

∂V

∂ t
=

LV

1− e−LV
(F +α0ΦV )+h.c., (3.8)

where

F = Dαwα +{e−V DαeV ,wα}. (3.9)

and ΦV is a chiral field, V = V aT a and T a is a representation matrix. The field strength wα is
given by wα ≡−D̄D̄(e−V DαeV ).

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
3
0
5

Generalized Gradient Flow Equation and Its Applications Kengo Kikuchi

3.2 Wess-Zumino Gauge

The gradient flow equation eq. (3.8) has infinite number of commutators in the general gauge,
which makes it difficult to solve. In order to obtain the flow equation with finite number of terms,
we chose the WZ gauge. However, generally the time evolution from the flow equation can carry
the system away from the WZ gauge. Therefore, the most important question is whether there exists
the special chiral field ΦV which give the super gauge transformation keeping the WZ gauge. As a
result, we find that such a ΦV exists as follows,

α0 = 1, (3.10)

δV = ΦV +Φ†
V +

1
2
[V ,ΦV −Φ†

V ]+
1
12

[V , [V ,ΦV +Φ†
V ]], (3.11)

where

ΦV = D̄2(D2V +[D2V ,V ]). (3.12)

Finally, we obtain the flow equations for the each component of the vector multiplet as

ċ = 0, χ̇ = 0, ˙̄χ = 0, ṁ = 0, ṁ∗ = 0, (3.13)

v̇m = −16Dkvmk +16Dm∂kvk −8{λ̄α̇ ,(σ̄mλ )α̇}, (3.14)
˙̄λ = −16σ̄ kσmDkDmλ̄ +8[λ̄ ,d + i∂mvm], (3.15)

λ̇ = −16σ kσ̄mDkDmλ −8[λ ,d − i∂mvm], (3.16)

ḋ = 16�d +16i[vm,∂ md]

+2iTr[σ̄mσ lσ̄ nσ k − σ̄mσ kσ̄ nσ l]DnDlvmk

+8i{λ̄α̇ ,(σ̄mDmλ )α̇}−8i{λ α ,(σmDmλ̄ )α}
−4[vm, [vm,d]]. (3.17)

We find that the flow equations for each component are consistent with WZ gauge. Here we choose
initial conditions to satisfy the WZ gauge at t = 0 as

c|t=0 = 0,χ |t=0 = 0, χ̄|t=0 = 0,m|t=0 = 0,m∗|t=0 = 0,

vm|t=0 = Vm, λ̄ |t=0 = Λ̄,λ |t=0 = Λ,d|t=0 = D. (3.18)

4. d=2 O(N) Nonlinear Sigma Model

4.1 Gradient Flow Equation of d=2 O(N) Nonlinear Sigma Model

We consider the O(N) nonlinear sigma model in two dimensions. The action is given by

S =
1

2g2

∫
d2x

N−1

∑
a,b=1

gab(ϕ)
(

∂µϕa∂µϕb
)

(4.1)
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where the metric gab and its inverse gab are provided by

gab(ϕ) = δab +
ϕaφ b

1− (ϕc)2 , gab(ϕ) = δab −ϕaφ b. (4.2)

Introducing the momentum cutoff Λ, the gap equation leads to

1 =
λ
4π

ln
Λ2 +m2

m2 , (4.3)

where λ ≡ g2N is the ’t Hooft coupling constant, and m is the dynamically generated mass.
Using eq. (2.2), we obtain the gradient flow equation of the O(N) nonlinear sigma model in

two dimensions as

d
dt

φ a = �φ a +φ a∂µ~φ ·∂µ~φ +
φ a(∂µ~φ 2)2

4(1−~φ 2)
, (4.4)

where the initial condition is φ a(0,x) = ϕ(x). Here we rescaled t as t → g2t and summations over
indices are implicitly assumed as

~φ 2 =
N−1

∑
b=1

(φ b)2, (∂µ~φ)2 =
N−1

∑
b=1

(∂µφ b)2. (4.5)

4.2 Solution to Gradient Flow Equation in Large N Expansion

To solve eq. (4.4), we employ the large N expansion, which makes the equation much simpler
after dropping the subleading contributions. We take the ansatz for the solution to the gradient flow
equation as

φ a(t, p) = f (t)e−p2t
∞

∑
n=0

: Xa
2n+1(ϕ , p, t) : , (4.6)

where X2n+1 only contains 2n+1-th order of ϕ , and : O : represents the "normal ordering", which
prohibits self-contractions within the operator O . Formally we can define the normal ordering
recursively in the perturbation theory around the large N vacuum as

: ϕa(p) : = ϕa(p) (4.7)

〈: ϕa1(p1)ϕa2(p2) : O〉 = 〈ϕa1(p1)ϕa2(p2)O〉−〈ϕa1(p1)ϕa2(p2)〉〈O〉 (4.8)

〈:
n

∏
j=1

ϕa j(p j) : O〉 = 〈
n

∏
j=1

ϕa j(p j)O〉−
n

∑
k 6=l

〈ϕak(pk)ϕal (pl)〉〈:
n−2

∏
j 6=k,l

ϕa j(p j) : O〉 (4.9)

for an arbitrary operator O . From the initial condition for ϕ , we have

Xa
1 (ϕ, p,0) = ϕa(p), f (0) = 1, Xa

2n+1(ϕ, p,0) = 0, n ≥ 1. (4.10)

The gradient flow equation in the momentum space is written as

La(t, p) ≡ φ̇ a(t, p)+ p2φ a(t, p)

= Ra(t, p) ≡ −
∫ 3

p
φ a(t, p1)(p2 · p3)~φ(t, p2) ·~φ(t, p3)−

∞

∑
n=0

∫ 2n+5

p
φ a(t, p1)

× p2 + p3

2
· p4 + p5

2

n+2

∏
j=1

~φ(t, p2 j) ·~φ(t, p2 j+1), (4.11)
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where we define ∫ n

p
≡

n

∏
i=1

∫ d2 pi

(2π)2 δ̂

(
n

∑
i=1

pi − p

)
, δ̂ (p) ≡ (2π)2δ (2)(p). (4.12)

Using the ansatz eq. (4.6), the left hand side is expressed as

La(t, p) = e−p2t

[
ḟ (t)

∞

∑
n=0

: Xa
2n+1(ϕ , p, t) : + f (t)

∞

∑
n=1

: Ẋa
2n+1(ϕ , p, t) :

]
, (4.13)

and a similar expression is obtained for the right hand side.
At the leading order of the large N expansion, we obtain

〈La(t, p)O1〉 = e−p2t ḟ (t)〈ϕa(p)O1〉, (4.14)

〈Ra(t, p)O1〉 = λe−p2t f 3(t)I(t)〈ϕa(p)O1〉+O(1/N), (4.15)

where

I(t) =
∫ d2q

(2π)2
q2

q2 +m2 e−2q2t . (4.16)

The gradient flow equation that 〈La(t, p)O1〉 = 〈Ra(t, p)O1〉 implies

ḟ (t) = λ f 3(t)I(t), (4.17)

which can be solved as

f (t) =

√
log(1+Λ2/m2)

Ei(−2t(Λ2 +m2))−Ei(−2tm2)
e−m2t , (4.18)

where Ei(x) is the exponential integral function defined by Ei(−x) =
∫

dx e−x

x .
We can show the finiteness of the flowed field two point function without field renormalization

non-perturbatively at the leading order of the large N expansion, where the two point function is
given by

〈φ a(t1, p1)φ b(t2, p2)〉 = f (t1) f (t2)e−p2
1t1e−p2

2t2〈ϕa(p1)ϕb(p2)〉

=
f (t1) f (t2)λ

N
δ abδ̂ (p1 + p2)

e−p2
1(t1+t2)

p2
1 +m2 . (4.19)

Since λ f (t1) f (t2) in the limit Λ → ∞ becomes

lim
Λ→∞

λ f (t1) f (t2) = 4π
e−m2(t1+t2)√

−Ei(−2t1m2)
√
−Ei(−2t2m2)

, (4.20)

the two point function for the bare field φ is shown to be finite as

〈φ a(t1, p1)φ b(t2, p2)〉 =
4πe−(p2

1+m2)(t1+t2)δ abδ̂ (p1 + p2)
N
√

−Ei(−2t1m2)
√

−Ei(−2t2m2)
1

p2
1 +m2 (4.21)

unless t1t2 = 0. Since any n-point functions of the d = 2, O(N) nonlinear sigma model can be
expressed in terms of the two point function in the large N limit, the flowed d = 2, O(N) nonlinear
sigma model is finite non-perturbatively in this limit .

The two point function of flowed fields was independently analyzed in Ref. [7] by the different
method, and the result turns out to be consistent with ours.
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5. Discussion

The gradient flow equation has the attractive property that any composite operators constructed
from flowed fields at finite t are finite without additional renormalization. Therefore, it is worth
extending the method to various systems. In this report , we proposed the generalized gradient
flow equation for quantum fields theories with nonlinearly realized symmetries, and apply it to the
N = 1,d = 4, SU(N) super Yang-Mills theory and the d = 2,O(N) nonlinear sigma model.

There are various directions in future researches. First of all, it is important to investigate the
finiteness for the flowed field in the super Yang-Mills theory, as in the case of Yang-Mills theory [8].
It is also interesting to extend this method to N = 2, or 4 supersymmetric theories. Using the
next to leading order results in the d = 2,O(N) nonlinear sigma model [6], we may explicitly
examine the finiteness of the connected four point function for the flowed field. A different aspect
of the gradient flow equation has already been studied in Ref. [9]. Finally it may be important to
understand a possible relation between the gradient flow equation and the exact renormalization
group equation.
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