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1. Introduction

LargeN reduced models have been proposed as the non-perturbative definition of superstring
theory. Especially, the [I1B matrix mod€l[[is one of the most successful proposals. The 1B matrix
model is formally obtained by the dimensional reduction of ten-dimensignat 1 super-Yang-

Mills theory to zero dimensions. In the IIB matrix model, spacetime is dynamically generated from
the degrees of freedom of the bosonic matrices, despite the fact that it does not exist a priori in the
model. Superstring theory is well-defined only in ten-dimensional spacetime, and it is an important
question how our four-dimensional spacetime dynamically emerges. Monte Carlo studies of the
1IB matrix model have a possibility to shed light on this question from a first principle calculation.

The Euclidean version of the 1B matrix model is obtained after a Wick rotation of the temporal
direction. It has a manifest SO(10) rotational symmetry which, if spontaneously broken, yields a
spacetime compactified to lower dimensions. However, its numerical simulation has been hindered
by the “complex action problem”, because the Pfaffian obtained after integrating out the fermions
is complex in general.

Apart from the matrix models of superstring theory, there are many interesting systems that
are plagued by the “complex action problem”. Lattice gauge theories with a non-zero chemical
potential are the ones that have attracted most of the attention in this context. In this work, we
apply the “factorization method”, which was originally proposed in r] gnd generalized in
ref. [3], to the Monte Carlo studies of the Euclidean version of the 1IB matrix model. The IIB
matrix model has also been studied analytically by the Gaussian Expansion Method (@GBM) [
Preliminary results of our Monte Carlo simulation are consistent with the GEM results and provide
evidence that the factorization method is a successful approach to studying interesting systems that
suffer from the complex action problem.

2. Factorization method

Generally, it is difficult to numerically simulate the complex action system
Z= /dAe-5°+‘r. (2.1)

Sincee 1l js not real positive, we cannot view it as a sampling probability in the Monte Carlo
simulation. One way to calculate the vacuum expectation value (VEV) of an observabléo

use the reweightingo’) = <Zér;(>)°. Here,(---) and(---)o are the VEV's for the original partition
functionZ and the phase-quenched partition functin= [ dAe =, respectively. This is not an

easy task since the phasenay fluctuate wildly. In order to compute’) with given accuracy one
needs Qe°"sY) configurations, wher¥ is the system size. This is called the “sign problem” or

the “complex action problem”.

Yet another problem is that the important configurations are different for different partition
functions. This is called the “overlap problem”. We are plagued with this overlap problem in
trying to obtain the VEV( &) through the simulation of the phase-quenched partiipn

The factorization method was proposed in order to reduce the overlap problem and achieve an
importance sampling for the original partition functiéii [§]. We select the set of the observables

>={0okk=1,2,---,n}, (2.2)
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which are strongly correlated with the phdsdn the following, we define the normalized observ-
ablesdy = Okx/{Ox)o. We employ the factorization property of the density of states, - -- , X,):

>

(X1, %) = ([10(%— Gk)) = ép@)(xl,..- Xn)W(X1, -+, Xn). (2.3)
k=1

The constan€ = (€")o is irrelevant in the followingp(@ (x1,--- , %) = ([Th_; 3(% — Gk))o is the
density of states in the phase-quenched maalel,- - -x,) = (€7 )y is the VEV in the constrained
system

Z = / dAeS 50~ Gi). (2.4)

When the system si2é goes to infinity, the VEV’s are given b{) = X, where(Xy, - - , %) is
the position of the peak gf(xs,- - - ,X,). This can be obtained by solving the saddle-point equation

J (1 17} 1
im —{ = O (x;.... ———{ lim =
VllH»oo a:: {V |ng (X17 7Xn)} an {VllH»ooV lOgW(XL 7Xn)} . (25)

When we properly choose the maximal set of the observahles achieve effective importance
sampling for the original partition functian [3].

3. Euclidean version of the IIB matrix model

We study the IIB matrix modell], which is defined by the following partition function:

Z= / dAdye ($+S), 3.1)
where the bosonic pa8, and the fermionic pat% are respectively
1
S = —@tr[Au,Av]z, (3.2)
1
S = ngtr(‘ﬂa((gru)aﬁ[AﬂvWB])‘ (3.3)

The bosong\;, (1 =1,2,---,10) and the Majorana-Weyl spinogg, (o = 1,2,---,16) areN x N
traceless hermitian matrices. In the following, without loss of generality wg¢t= 1. The
indices are contracted by the Euclidean metric after the Wick rotaffigrare thel6 x 16 Gamma
matrices after the Weyl projection, ard is the charge conjugation matrix. This model has the
SO(10) rotational symmetry. In ref|], it is shown that the partition function is positive definite
without cutoffs.

This model is formally obtained by the dimensional reduction of ten-dimensighal 1 super
Yang-Mills theory to zero dimensions. The IIB matrix model has.the= 2 supersymmetry

oAy =T, Sy =S AITe, 8PA =0, dPy—c.  (34)

For the linear combinatioﬁél) = 65(1) + 65(2) and&:(z) = i(55(1) — 65(2)), we have

8, 30, = —2i6%e(¢T,)E, (B®,5Pw =0, (ab=1.2). (35)
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This leads to the interpretation of the eigenvalues of the bosonic ma#jcas the spacetime co-
ordinates. Hence, the spontaneous symmetry breakdown (SSB) of the SO(10) rotational symmetry
is identified with the dynamical compactification of the extra dimensions.

The order parameters of the SSB of the SO(10) rotational symmetry are the eigervalues
(n=1,2,---,10) of the “moment of inertia tensor”

ltr(AuAv), (3.6)

TIJV:N

which are ordered a¥, > A2 > - -- > A1o before taking the expectation value (M), - - -, (Aq) grow
and (Aq11),- -+, {A10) shrink in the largeN limit, this suggests the SSB of the SO(10) rotational
symmetry to S@d) and hence the dynamical compactification of ten-dimensional spacetiche to
dimensions. This scenario has been studied via GEM in[Bf.The results of the studies of the
SO(d) symmetric vacua foR < d < 7 are summarized as follows:

1. The extent of the shrunken directions= limy_e vAn (N=d+1,---,10) is r2 ~ 0.155,
which does not depend ah(universal compactification scale).

2. The ten-dimensional volume of the Euclidean spacetime does not depehekopptd = 2
(constant volume property). For the extent of the extended dired®enmpy_,e vAn (N =
1,2,---,d), the volume i3/ = RAr10-d — |10 wjth |2 ~ 0.383

3. The free energy takes the minimum valuelat 3, which suggests the dynamical emergence
of threedimensional spacetime.

In ref. [E], the six-dimensional version of the Euclidean 1B matrix model was studied via GEM,
and the six-dimensional version also turns out to have these three properties. The same model was
studied numerically in ref[q], and the results are consistent with the GEM results.

Next, we review the mechanism of the dynam-

ical compactification of spacetime in the Euclidean i‘i
1IB matrix model [g]. Integrating out the fermions, 1'2 |

we have

o

A
/dwe*S =Pf, B7) ¥

where . Zaq pg = —ifanc(€T 1) apAs is @ 16(N? —
1) x 16(N? — 1) anti-symmetric matrix. The in- ‘ R —
dicesa,b,c run overl,2,--- ,N2—1, and fap are 0 0.05 01 0.15 0.2

the structure constants of . A% are the co- ) 1N .
) H Figure 1. The VEV (An)o with respect to

efficients in the expansioA, = ZyzzflAfxTc With  the phase-quenched partition fucntiénup to
respect to the SUN) generatorsT®. Under the N =32

transformationA1g — —Aqg, PE.#Z becomes com-

plex conjugate. We define the phase of the Pfaffiams Pf# = |Pf.#|€". Pl is real for the
nine-dimensional configuratiofyo = 0. When the configuration d-dimensional 8 < d < 9), we

find ﬂ% =0form=1,2,---,9—d, because the configuration is at most nine-dimensional
up to the(9—d)-th order of the perturbations. Thus, the phase o#Phecomes more stationary
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for the lower dimensions. The numerical results in 1f.glso suggest that there is no SSB of the
rotational symmetry in the phase-quenched model. We calc{igte numerically, wheré. - - )q is
the VEV with respect to the phase-quenched partition function

Zo = /dAe*Sb\Pt///]. (3.8)

We use the Rational Hybrid Monte Carlo (RHMC) algorithm, whose details are presented in Ap-
pendix A of ref. [7]. The result in figll shows thatA,)o converge td? ~ 0.383at largeN for all
n=12---,10. This suggests that there is no SSB of the SO(10) rotational symmetry, and that the
result is consistent with the constant volume property.

4. Results

The modelB.J) suffers from a strong complex action problem, and we apply the factorization
method to this system. It turns out to be sufficient to constrain only one eigenvaloamely the
choice of the sek in eq. .2) should bex = {A,}. This is because the larger eigenvalues do not
affect much the fluctuation of the phase. This choic& &f similar to that of the six-dimensional
version of the IIB matrix mode[q]. When we constraid,, the eigenvalued, An. 1, --A1o take
the small value, which corresponds to the(80symmetric vacuum, with = d + 1. This leads us
to simulate the partition function of the constrained system

Zox = [ dAe SIPLA|B(x~ ). (4.1)

which is simulated via the RHMC algorithm. The raﬁQ: An/{An)o corresponds to the square
of the ratio of the extents of the extended and shrunken directighg, in the S@d) vacua with
n=d+ 1. The saddle-point equatio@.B) is now simplified as

1 1
N2 fn“’) (x) = ~dxN2 logwn(x), where (4.2)
d ~ .
frg()) (x) = &|09<6(X_)\n)>0, Wn(X) = <e|r>n,x = (cos )nx, (4.3)

in the largeN limit. (---)nx is the VEV of the partition functio@y x. We have(eir)n.,X = (CosT )nx,
because under the transformatian — —Aqo the Pfaffian Pf# becomes complex conjugate while
the bosonic actiorid2d) and the eigenvalues of the tend8rgj are invariant. The solution of the

saddle-point equatiod(?) x, gives the VEV(A,) = X, in the SQd) vacuum withn = d + 1.
Solving this saddle-point equation amounts to finding the minimum of the free energy

Fsota)(X) =~ 13100P0(X), Wherepn(x) = ((x An)) (4.9

in the S@d) vacuum withn = d+ 1. The GEM result suggests that the free energy takes the
minimum for the SO(3) vacuum. In order to reduce the CPU costs, we focus onth& 4,5
cases, which correspond to the SO(2), SO(3), SO(4) vacua, respectively.

In fig. @ (LEFT) we plotlogwn(x) for n =4 up toN = 16, where we observe a good scaling
behavior at smalk

1
N logwi(X) ~ —anx1™" — by, (4.5)
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The coefficients, andby are obtained for eadN, by fitting the data. Then, we extrapolate the co-
efficientsay, b, and obtain the larg&t limit, which corresponds t@p(X) = limy_ 1 % logwi(X).
This is represented by the solid line in f§(LEFT).

The functionf(©)(x) has a scaling behavior aroufidt < x < 1

%f,ﬁo) (X) = gn(X), wheregn(X) = cn(x— 1) + dn(x—1)2. (4.6)

Subtracting this effect in order to reduce finkieeffects, we plog\% fn<°> (X) — g,”\l—(xx) forn=41in fig.
(RIGHT). We find that the results scale reasonably well ud te 24 in the smallx regionx < 0.4.
This implies the hard-core potential structure at smalh the six-dimensional version of the 11B
matrix model, this effect is absent in the one-loop approximaf@ntut is observed in the full
model without one-loop approximatiofd][ The intersection 0% {0 (x) — g‘,“\l—(xx) and—%(CDn(x)
represents the solution of the saddle-point equalidd).(Fig. 2 (RIGHT) shows that the solution
Xn is close tolré ~ 8:%23 =0.404--- for n=4. Forn= 3,5, too, we have obtained similar results,
and the solutiorx; is close to 0.404. This is consistent with the “universal compactification scale”
property.
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Figure 2: (LEFT) logws(x) againsi’ at smallx. (RIGHT) = fio) (X) — g‘,‘\,—(;‘) up toN = 24. Its intersection
with — &£ dy(x) gives the solutior.

Next, we compare the free enerf/4) for the

0 "o ® me .0 @
SQ(d) vacuum. The free energy At X, is 0.005 | o -mﬁ‘” RS
X o 001 LYSIEL N
1 0 1 - £ 0015 S
Z. :/ dx— fn ' (X) — = logw, , @47 x i 4
sow) = [ OXgz'n (X) Nz 09 n(Xn), (4.7) | 0, 7
S 0025 | n=3N=12 — = t}
with n=d+ 1. Due to the scaling behavidd®, © o3| Rfi’ﬁfig o %
the first term of the r.h.s of eq.d[d) vanishes at 0035 | n=4.N=16 =
1 — N=5,N=12 -
large N. Thus we comparg;; logwn(X,). From -0.04 : : : :
0 01 02 03 04 05

fig. @ we see that the free energ¥isq,) is much
higher thanZsq5) and Fsqs) aroundx~ 0.4. It Figyre 3; <z logw(x) forn=3,4,N = 12,16
is still difficult to determine whether the SO(3) or andn=5,N = 12

the SO(4) vacuum is energetically favored. More

analysis will be reported elsewhere.
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5. Conclusion

In this work, we have performed Monte Carlo simulations of the Euclidean version of the
1IB matrix model using the factorization method, in order to study the dynamical compactification
of the extra dimensions. The results turn out to be consistent with the GEM predictions. We
have seen that in the phase-quenched model there is ho SSB of the SO(10) rotational symmetry,
and that the volume of spacetime is consistent with the GEM results. The furfé?l)cén) has
a hard-core potential structure, and as a result of that, the computed shrunken dimensions are
found to be consistent with the GEM results. Also, we have succeeded in finding that the SO(2)
vacuum is energetically disfavored, compared to the SO(3) or SO(4) vacuum. The results of the
Lorentzian version of the 1B matrix model, where (3+1)-dimensional spacetime is found to expand
dynamically [[J, and the scenario discussed in this work, suggest that the physical interpretation
of the Euclidean IIB matrix model needs to be further investigated.
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