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density of the lattice Dirac operator as a continuous function over all scales of the complete
eigenvalue spectrum. This is distinct from an earlier method where the integrated spectral density
(mode number) was calculated efficiently for some preselected fixed range of the integration. The
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include the scale-dependent mass anomalous dimension, spectral representation of composite
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sextet SU(3) gauge theory that we continue to pursue for its potential as a minimal realization of
the composite Higgs scenario.
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New approach to the Dirac spectral density with applications

1. Introduction and brief history

We introduce a new approach to the Dirac spectral density and mode number distribution in
lattice gauge theories. The algorithm effectively generates the spectral density of the lattice Dirac
operator as a continuous function over the entire range of the eigenvalue spectrum in large lattice
volumes. This is distinct from an earlier method [1] where the integrated spectral density (mode
number) was calculated efficiently for some preselected fixed range of the integration and averaged
over gauge configurations. Motivated by [1] we set the goal to calculate efficiently the spectral
density over the entire Dirac spectrum which can be integrated over any range to generate the mode
number distribution on arbitrary scales in a single application to the gauge configuration before the
average is taken over the gauge ensemble. Just like the method introduced in [1] for gauge theory
applications, our method is also rooted in known applications of the Chebyshev expansion from
approximation theory when combined with stochastic evaluation of operator traces in large vector
spaces.

We have been developing and testing the reported lattice gauge theory algorithm over the last
few years with results appearing in our earlier publications including [2, 3]. Our implementation
of the algorithm itself was only presented for the first time in [4] with similar material to the one
presented at this conference. We hope to motivate new work by our successful and thorough tests
of this new lattice gauge theory application, implemented with staggered lattice fermions in our
case. As an example, for extension to other type of lattice fermions, interesting new results were
presented at this conference on the chiral condensate of the Dirac operator with domain wall lattice
fermions using the same approach [5].

Based on the poster we presented at this conference, we demonstrate the effectiveness of the
new algorithm. The plots in this short report are updated from the poster for better illustration
of the algorithm and for pedagogical purposes. Section 2 is a brief summary of the method. In
Section 3 we present some tests and implementations as applied to the spectral density of the
chiral condensate and the mode number distribution. Section 4 is a brief illustration of physics
applications where we present our first tests of the GMOR relation and the scale dependent mass
anomalous dimension of the chiral condensate in the 2-flavor sextet SU(3) gauge theory that we
continue to pursue for its viability as a minimal realization of the composite Higgs scenario. The
method we present projects interesting new applications for future studies.

2. Resolution of spectral lines from a stochastic Chebyshev expansion

In [1] the projector operator was used for the determination of the mode number of the Dirac
spectrum. A rational approximation to the projector operator was estimated by a Chebyshev
polynomial expansion. Here we will approximate the δ -function of the Dirac operator, with its
Chebyshev-Jackson polynomial approximation which will determine the moments of the spectral
density to a preset high order. Similar methods have been found and referenced for the curious
reader in [5] from recent history of approximation theory. Adding to the historical perspective,
we note some very early work applying Chebyshev approximation to moments of spectral densi-
ties for Hamiltonian spectra [6], curiously with co-authors from the same institutional affiliation as
one of us, but from an earlier era. Our method can be viewed as a similar approximation but has
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broader scope and general applicability to a large class of Hamiltonian problems with stochastic
implementation from the modern computer era.

We will describe the new algorithm for the spectrum of the staggered Dirac operator in a finite
lattice volume, but the generalization to the spectrum of a large class of other operators under some
general spectral conditions is straightforward. For a finite lattice four-volume V , with periodic
or antiperiodic boundary conditions for fermions, the euclidean Dirac operator D on any given
gauge field configuration has purely imaginary eigenvalues iλ1, iλ2, ..., with the associated average
spectral density ρ(λ ,m),

ρ(λ ,m) =
1

Neig

Neig

∑
i=1
〈δ (λ −λi)〉. (2.1)

In Eq. (2.1) the sum over Neig individual λi eigenvalues is averaged over gauge configurations
which depend on the bare fermion mass m. The spectral density is a renormalizable quantity in
gauge theories and the entire function in λ can be computed at fixed m on the lattice using the
Chebyshev-Jackson expansion we will introduce. It is convenient to consider the mode number
ν(Λ,m) of the positive definite hermitian operator D†D+m2 in the integrated form of the spectral
density as given by Eq. (2.2),

ν(M,m) =V
∫

Λ

−Λ

dλρ(λ ,m), Λ =
√

M2−m2. (2.2)

The important role of the mode number distribution in the analysis of the chiral condensate was
emphasized in [1] with a demonstration of its renormalization group invariance νR(MR,mR) =

ν(M,m). After rescaling the spectrum of the Dirac operator D and its equivalent D†D quadratic
form, the spectral density ρ(t) depends on scaled eigenvalues λ̄i with

ρ(t) =
1

Neig

Neig

∑
i=1
〈δ (t− λ̄i)〉gauge ensemble (2.3)

where the variable t is restricted to the [-1,1] interval with rescaled eigenvalues λ̄i in the [-1,1]
interval. The implicit dependence on the bare fermion mass m often will not be shown for conve-
nience. The density function ρ(t) can be expanded into a series of Tk(t) Chebyshev polynomials
of the first kind,

ρ(t) =
1√

1− t2

∞

∑
k=0

ckTk(t), (2.4)

with Chebyshev expansion coefficients

ck =


2
π

∫ 1
−1 Tk(t)ρ(t)dt k = 0

1
π

∫ 1
−1 Tk(t)ρ(t)dt k 6= 0.

(2.5)

In practical implementations D will be replaced by the positive definite D†D operator and the
Chebyshev coefficients can be expressed in terms of D†D eigenvalues,

ck =


2

Neigπ
∑

Neig
i=1 Tk(λ̄

2
i ) k = 0

1
Neigπ

∑
Neig
i=1 Tk(λ̄

2
i ) k 6= 0.

(2.6)
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Based on Eq.(2.6), the evaluation of the operator traces Tr(Tk(D†D)) is needed to calculate the
spectral density function. We use the well-known stochastic evaluation with Z(2) noise vectors ξ ,

Tr(Tk(D†D))≈ 1
Nnoise

Nnoise

∑
n=1

ξ
T
n ·Tk(D†D) ·ξn. (2.7)

Recursion relations for Chebyshev polynomials of the operators,

Tk+1(D†D)) ·ξ = 2D†D ·Tk(D†D) ·ξ −Tk−1(D†D) ·ξ ,
ξ
(n) = Tn(D†D)) ·ξ (0)⇔ ξ

(i+1) = 2D†D ·ξ (i)−ξ
(i−1), (2.8)

are used in averages over noise vectors ξ in repeated recursions. The series has to be truncated at
some finite order which will provide the Dirac δ -function and the Heaviside step function Θ at finite
resolution. Figure 1 shows the spectral resolution of δ (λ ) for a spectral line at λ = 0.005 and Θ(t)
at step t = 1 for two different orders of the Chebyshev expansion. On the left panel, the resolution
of the spectral function for a sharp δ -function spectral line at λ = 0.005 is color coded. The width
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Figure 1: The left panel shows the sharp δ -function spectral line in finite resolution with 1/N scaling and Gibbs
oscillations (red insert) damped with Jackson coefficients in the main part of the left panel (red). The right panel shows
the finite resolution of the Heaviside step function.

of the finite resolution is scaling with 1/N in the order N of the Chebyshev expansion. In red color
the resolution of the spectral density at truncation N = 8000 from the Chebyshev coefficients of
Eq. (2.5) is shown for the sharp δ -function spectral line. The truncation, as the insert of the left
panel shows, introduces well-known Gibbs oscillations in the truncated spectral function at finite
resolution. The Gibbs oscillations can be damped by the modified expansion

ρ(t) =
1√

1− t2

∞

∑
k=0

ckTk(t)⇒
1√

1− t2

∞

∑
k=0

ckgkTk(t), (2.9)

with Jackson coefficients gk which are well-known in approximation theory [7] for damping the
Gibbs oscillations with slight loss in the resolution. Blue color on the left panel of Figure 1 shows
the Chebyshev-Jackson expansion for the same spectral line at lower resolution consistent with
1/N scaling. Color coding on the right panel shows the resolution of the Heaviside step function
comparing the Gibbs oscillation and its Jackson damping at the same Chebyshev order.
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3. Spectral density and Mode number

To illustrate the efficiency of the method, Figure 2 shows results from the calculation of
the spectral density and the related mode number distribution on all scales using the Chebyshev-
Jackson expansion of Eq. (2.9). The calculation targets here an important BSM gauge theory with a
fermion doublet in the two-index symmetric (sextet) representation of the SU(3) BSM color gauge
group as reviewed in talks at this conference [8]. The upper left panel of the figure shows the spec-
tral density of the staggered D†D Dirac operator using ten independent gauge configurations on the
lattice volume with size 643× 96 at bare gauge coupling set by β = 3.25 in the lattice action [8]
and the fermion mass set at m = 0.001. Chebyshev polynomials up to order 8000 were used in the
expansion with 20 noise vectors defined in Eq. (2.7). The size of the Jackknife errors in the spectral
density is not visible on the scale of the upper left panel of the plot. The upper right panel shows the
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Figure 2: Tests with a fermion doublet in the two-index symmetric (sextet) representation of the SU(3) BSM color
gauge group in the composite figure are discussed in the text. The black data points in the lower left panel come from
direct diagonalization which is an important part of the testing procedure. The magenta line of the panel shows the result
with N=8000 Chebyshev order in perfect match to the direct diagonalization data.

mode number counting the eigenmodes from the integral of the spectral density. It converges to the
correct total count which is half of what is shown in the upper left panel from the implementation

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
3
1
0

New approach to the Dirac spectral density with applications

of D†D on the staggered lattice counting only one of two degenerate eigenvalues of each pair in the
spectrum. The lower left panel magnifies the far infrared (IR) scale of the spectral density illus-
trating the convergence of the Chebyshev-Jackson expansion as the polynomial order is increased.
This panel also illustrates that the convergence rate is the slowest in the IR region and reached at
polynomial order N = 8000 with the magenta line which is practically identical to the lowest blue
line at N = 7000 even in the lowest eigenvalue range. Bands in the magnified IR part of the plot
show the visible Jackknife errors of the spectral density. All tests were made with 20 noise vectors.
Data points from the direct diagonalization of D†D are in excellent agreement with the expansion
even in the low IR region. The lower right panel shows the test when the number of noise vectors
is varied at fixed expansion order which is kept lower. The results show no bias as a function of
the noise vector number and with twenty (or fewer) noise vectors the variance is dominated by the
fluctuations over the gauge ensemble. The increased size of the error band simply comes from the
larger magnification.

4. Physics applications: GMOR and mass anomalous dimension

Excellent agreement between low eigenvalues from direct diagonalization of D†D and the full
spectral density function from the Chebyshev-Jackson expansion, as shown in Figure 2, provides
checks on the GMOR relation for the chiral condensate as discussed in [2, 3]. Chiral perturbation
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Figure 3: Results for the mass anomalous dimension γ(M), as defined in the text, are shown for the model with a
fermion doublet in the two-index symmetric (sextet) representation of the SU(3) BSM color gauge group. There are
results at five different lattice spacings, one of them at exactly zero fermion mass. With the renormalization constants
Zp and Zm determined in separate calculations, the continuum scale dependent mass anomalous dimension and its role
in fermion mass generation is left for a future publication in preparation.

theory of the effective chiral condensate Σeff , aided by the Chebyshev-Jackson expansion was used
in our tests of the GMOR relation for added evidence of chiral symmetry breaking in the sextet
BSM theory of the composite Higgs. The effective chiral condensate Σeff was analyzed based on
Eq. (4.1) as derived in [9],

Σeff

Σ
= 1+

Σ

32π3NFF4

[
2N2

F |Λ|arctan
|Λ|
m
−4π|Λ|−N2

Fm log
Λ2 +m2

µ2 −4m log
|Λ|
µ

]
. (4.1)
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Additional probing of chiral symmetry breaking includes the study of the mass anomalous
dimension γ(M) as shown in Figure 3. The anomalous dimension of the chiral condensate can be
determined from access to the mass anomalous dimension γ(M) in the eigenmode function [10, 11,
12],

νR(MR,mR) = ν(M,m)≈ const ·M
4

1+γm(M) (4.2)

The results are reported in Figure 3 with details left for a future publication in preparation.
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