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We investigate the phase structure of the SU(3) gauge theory with N f = 8 by numerical simula-
tions employing the massless Domain-Wall fermions. Our aim is to study directly the massless
quark region, since it is the most important region to clarify the properties of conformal theories.
When the number of flavor is within the conformal window, it is claimed recently with Wilson
quarks that there is the conformal region at the small quark mass region in the parameter space
in addition to the confining phase and the deconfining phase. We study the properties of the con-
formal region investing the spatial Polyakov loops and the temporal meson propagators. Our data
imply that there is the conformal region, and a phase transition between the confining phase and
the conformal region takes place. These results are consistent with the claim that the conformal
window is between 7 and 16. Progress reports on other related studies are also presented.
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Figure 1: Sketch of the phase structure in the (β ,m f )-plane.

1. Introduction

The SU(3) gauge theories with N f -fermions in the fundamental representation which we call
“many-flavor conformal QCD” are believed to have conformal properties when N f is within the
conformal window. This model have been intensively studied in the context of the composite
Higgs model as a candidate of the beyond standard model (See for a review [1].) Besides the
phenomenological interest, it is theoretically interesting and important to clarify the properties of
the theory. In refs. [2, 3] the authors claim, based on the study with the Wilson fermions, that

1. the conformal window is 7 ≤ N f ≤ 16

2. in addition to the confining phase and the deconfining phase there is a conformal region for
m f ≤ ΛIR (the IR-cutoff) in the deconfining phase

3. in the conformal region the vacuum is the non-trivial twisted Z(3) vacuum modified non-
perturbatively

4. in the conformal region meson propagators exhibit power corrected Yukawa type decay

Our objective is in this article to investigate these claims by numerical simulations with the
massless N f = 8 Domain-Wall fermions. For this purpose, the phase diagram predicted in ref. [3] is
translated to the one shown in Figure 1, where m f is the fermion mass. In the light fermion region
of the diagram, the conformal phase is separated from the confining phase at a certain value of β .
On the other hand, in the heavier mass region, the deconfining phase would disappear in the limit
of infinite lattice volume. The use of massless Domain-Wall fermions allows us to study the light
mass region without tuning the fermion mass to zero as in the Wilson formalism. The fact that the
chiral symmetry is realized to a good approximation is also advantageous to address the question
whether or not the conformal theory is chiral symmetric.

After presenting the details of our numerical simulations in Section 2, we show, in Section 3,
the vacuum structure based on the calculation of the spatial Polyakov loops and the meson temporal
propagators. Section 4 contains progress report on the study of identifying the location of the IR
fixed point using a scaling properties of meson propagators. We summarize our future plan in
Section 5.
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V = 83 ×32
β ∆τ #traj. AC amres

2.0 0.25 8,000 500 2.2×10−4

2.3 0.25 12,000 1,000 2.7×10−5

2.6 0.10 11,000 2,500 1.2×10−5

4.2 0.25 10,000 1,500 1.3×10−6

4.7 0.25 9,000 1,500 1.2×10−6

6.0 0.25 9,000 1,500 8.9×10−7

V = 163 ×64
β ∆τ #traj. AC amres

2.6 0.100 5,500 500 1.0×10−5

3.4 0.125 8,000 1,000 2.8×10−6

4.2 0.125 12,000 1,200 1.5×10−6

4.7 0.125 11,000 1,500 1.3×10−6

6.0 0.125 11,000 1,500 1.0×10−6

Table 1: Profiles of the generated gauge ensembles. For the lattice volume V = 83 ×32 (left) and 163 ×64
(right), values of β , MD-step size ∆τ , numbers of thermalized trajectories, a rough estimation of the auto-
correlation (AC) time and typical values of the residual fermion mass are listed for each.

2. Numerical Simulation

In our numerical simulation, we employ the Iwasaki action for the gauge sector and the N f =

8 Domain-Wall action for the fermion. The Domain-Wall formalism we use is the same as the
one originally proposed by Shamir in order to avoid complication related to its improvements.
Throughout this study, the bare fermion mass is set to zero. The Domain-Wall height and the 5-th
dimensional width are also fixed to M = 1.6 and Ls = 12, respectively. We set periodic boundary
conditions in the spatial directions and an anti-periodic condition in the temporal direction. By
using the IroIro++ code system [4], we generate gauge configurations with several values of β on
two different volumes 83 ×32 and 163 ×64. The unconventionally large size in the time direction
is for a critical study of the meson propagation presented in Section 4. In the molecular dynamics
of HMC, we use the two time-step Omelyan integrator with the step size ∆τ and ∆τ/4 for pseudo-
fermions and link variables, respectively. In Table 1, ∆τ and the number of thermalized trajectories
are listed for each ensemble (β and the lattice volume). The acceptance rates are more than 90%
for all generations.

Because of the massless simulation, slow thermalization and long auto-correlations are an-
ticipated, especially for the large β ensembles. We estimate these MD-times by monitoring the
magnitude of spatial Polyakov loops |Px|, |Py| and |Pz| on the configurations. From a perturbative
argument of the vacuum structure [3], at the larger β region, the spatial Polyakov will converge to a
non-zero value (with some fluctuation) whereas the temporal ones remain around zero. We can ex-
ploit the condition that the spatial Polyakov loops converge to some non-zero values. Results from
these rough estimation are listed in the third and fourth column of the tables. It is noted that the
number of thermalized trajectories are several times larger than the auto-correlation length for all
gauge ensembles. Therefore, the statistical localization can be avoided by measurements covering
whole thermalized trajectories.

To check the chiral property of the generated configurations, we compute residual fermion
mass amres using the definition by the violation of the Ginsparg-Wilson relation [5]. Simply av-
eraging the measured values on a few sample configurations for each ensemble, we obtain typical
magnitudes of amres as listed in the last column. Those values are sufficiently small (i.e. 0.1% of
the pseudo-scalar masses on the corresponding ensembles) to allow us to directly investigate the
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Figure 2: Distribution of the Polyakov loop measured on each gauge configurations at β = 2.6 (left),3.4
(center) and 4.2 (right). In each panel, Pt is shown by black symbols and Px,y,z by different colors. Results
on the 163 ×64 lattice are shown.
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Figure 3: Effective masses of pseudo-scalar (red) and vector (blue) mesons at β = 2.6 (left),3.4 (center) and
4.2 (right). Results on the 163 ×64 lattice are shown.

properties of the conformal region in the diagram.

3. Vacuum structure

Figure 2 shows the distribution of Polyakov loops in the complex plane at different β ’s on the
163 × 64 lattice. We observe that at β = 2.6 the distribution is centralized at the origin, while at
β = 3.4 the Polyakov loops in the spatial directions take the angles ±2π/3, as in the previous works
with the Wilson fermions [3]. At β = 4.2, the distribution becomes sharper and the magnitude
increases. Thus the Z(3) symmetry is broken for β ≥ 3.4 in the spatial directions, but the Z(3)
symmetry is preserved in the temporal direction. In other words, a phase transition from the Z(3)
symmetry symmetry phase to the broken phase seems to occur between β = 2.6 and β = 3.4.

The meson temporal propagators and masses contain useful and important information for the
investigation of the properties of the vacuum structure. The correlation functions are computed in
steps of 10 trajectories. We improve the signal by taking average of the propagator obtained with
local sources at different time-slices in intervals of 8 for β = 2.6 and 3.4 on the 163 × 64 lattice,
and of 4 for others. Three panels of Figure 3 show the effective masses obtained assuming the cosh
function on the 163 ×64 lattice. In each panel, we show the vector and pseudo-scalar channels at
the same β ’s as Figure 2. The mass difference seen at β = 2.6 diminishes at β = 3.4 and disappears
at even higher β . This is a sign of restoration of the chiral symmetry. Combined with the analysis
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Figure 4: Effective values of α (left panel) and m (right panel) on the 163 × 64 lattice. Results at β = 4.2
(red), 4.7 (green) and 6.0 (blue) are shown.

of the spatial Polyakov loops above the data suggest that there is a phase transition taking place
between the confining phase and the conformal phase between β = 2.6 and β = 3.4.

We note that the data behavior described in this section is more distinct with the 163 × 64
volume than 83 × 32. This implies that data obtained in a even larger volume would allow us to
investigate properties of the transition in more detail. In the following discussion, we assume our
gauge ensembles at β ≥ 3.4 on the 163 ×64 are in the conformal region.

4. Meson propagators

Now we investigate the property of the conformal phase through the pseudo-scalar meson
temporal propagator. It is known that in the conformal theory all correlation functions without
any IR cutoff show a power law behavior, ∝ t−α , at long distances. However, given our system is
in a finite box, the propagation is influenced by the IR-cutoff. Ref. [3] predicts that the modified
behavior is ∝ t−αe−mt (“the power-law corrected Yukawa type decay”), which looks a hybrid of
the power law and the ordinary exponential decay, ∝ e−mt .

We parametrize the propagator as G(t) = At−αe−mt . Assuming a mild t-dependence of α and
m such that they do not significantly change between time slices at t and t ± 1, those effective
values are obtained from the data of G(t) and G(t ± 1). In the two panels of Figure 4, we plot
those quantities on the 163 ×64 lattice for β = 4.2, 4.7 and 6.0 with different colors. In the figure,
the assumption of the mild t-dependence is reasonably satisfied while there is no significant β -
dependence observed with the current statistics. Applying the relation α = 3− 2γ∗m to the plat
region 10 ≤ t ≤ 20 for β = 4.2, we obtain a rough estimation 0.2 <∼ γm

<∼ 0.6, which is consistent
with the previous result [3] (see Eq. 11, pages 31 and 33). To increase the reliability of the estimate
we will increase statistics at β = 3.4, which is closer to the transition point. (We have excluded the
data at β = 3.4 in Figure 4 due to poor statistics.)

As another important analysis using the meson propagator, we attempt to determine the loca-
tion of the infra-red fixed point (IRFP) [8]. For the lattice size N, we consider the scaled propagator
G̃(τ = t/Nt ;N) = G(t;N). At IRFP, due to the finite size scaling, G̃ with the different lattice sizes
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Figure 5: Comparison of the effective mass m̂ obtained with two different volumes 163 × 64 (red) and
83 ×32 (blue) at β = 4.2 (left), 4.7 (center) and 6.0 (right).

N and N′ are related by

G̃(τ ;N) = (N′/N)3−2γmG̃(τ;N ′). (4.1)

This relation further implies that the scaled effective mass defined by

m̂(τ;N)≡ Nt ln(G(t;N)/G(t +1;N)) (4.2)

should be volume-independent at IRFP. In Figure 5, we compare m̂ at three different β ’s in the
conformal region on the two lattice volumes. In the figure, we observe the magnitude relation of
the two volumes at large τ changes between β = 4.2 and 4.7, which implies the existence of IRFP
in this region. For a conclusive determination of the existence and the location of IRFP, we need
more data points with different β to narrow the β -region and those with larger volume to confirm
the size-independence.

5. Future plans

Besides the analyses presented in the last two sections, we attempt to obtain spectral density
ρ(λ ) of the Dirac-eigenvalue λ by the stochastic method [9, 10, 11]. However, the discussion
based on the Banks-Casher relation requires the large volume limit before the chiral limit is taken.
Also, it should be noted that the sign of the chiral symmetry violation may be so delicate that
a careful study as seen in ref. [12] is necessary. That means calculations have to be done in a
sufficiently large volume with non-zero fermion masses to be able to determine whether or not the
chiral symmetry is conserved in the conformal region. The same is valid to extract γm in a reliable
manner.

As seen in the plots presented in Section 3 and 4, the data of meson propagator have to be
improved by more statistics. We are also planning to generate gauge ensembles on a larger volume
to conclude our study. Combining the data on those ensembles with the current ones, it is possible
to sort out the issues of the phase transition in Section 3 and of the property of the meson propagator
in Section 4, as well as the above Dirac-spectrum analysis. A natural target is 323 × 128. At the
same time, we aim to understand the relation of our work with others which use different fermion
formalism or setup [7, 13, 14].
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