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We have pointed out that theSU(3) Yang-Mills theory has a new way of reformulation using new field
variables (minimal option), in addition to the conventional option adopted by Cho, Faddeev and Niemi
(maximal option). The reformulation enables us to change the original non-Abelian gauge field into the
new field variables such that one of them called the restricted field gives the dominant contribution to
quark confinement in the gauge-independent way. In the minimal option, especially, the restricted field
is non-AbelianU(2) and involves the non-Abelian magnetic monopole. In the preceding lattice con-
ferences, we have accumulated the numerical evidences for the non-Abelian magnetic-monopole dom-
inance in addition to the restricted non-Abelian field dominance for quark confinement supporting the
non-Abelian dual superconductivity using the minimal option for the SU(3) Yang-Mills theory. This
should be compared with the maximal option which is a gauge invarient version of the Abelian projection
in the maximal Abelian gauge: the restricted field is AbelianU(1)×U(1) and involves only the Abelian
magnetic monopole, just like the Abelian projection.

In this talk, we focus on discriminating between two reformulations, i.e., maximal and minimal options

of SU(3) Yang-Mills theory for quark confinement from the viewpoint of dual superconductivity. For this

purpose, we measure the distribution of the chromoelectric flux connecting a quark and an antiquark and

the induced magnetic-monopole current around the flux tube.
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Abelian monopole or non-Abelian monopole responsible for quark confinement Akihiro Shibata

1. Introduction

The dual superconductivity is a promising mechanism for quark confinement.[2]. In order to establish
this picture, we have to show evidences of the dual version of the superconductivity. For this purpose,
we have presented a new formulation of theSU(3) Yang-Mills (YM) theory using new field variables.(For
a review see [1]) The reformulation enables us to change the original non-Abelian gauge field into the
new field variables such that one of them called the restricted field gives the dominant contribution to
quark confinement in the gauge-independent way.[3] The lattice version of a new formulation ofSU(N)
YM theory gives the decomposition of a gauge link variable corresponding to its stability gauge group:
Ux,µ = Xx,µVx,µ , whereVx,µ could be the dominant mode for quark confinement, andXx,µ the remainder
part.[4]

For SU(3) YM theory, we have two options: the minimal option and maximal option. In the min-
imal option, especially, the restricted field is non-AbelianU(2) and involves the non-Abelian magnetic
monopole. In the preceding works, we have shown numerical evidences of the non-Abelian dual super-
conductivity using the minimal option for theSU(3) YM theory on a lattice: the non-Abelian magnetic
monopole as well as the restricted non-Abelian field dominantly reproduces the string tension in the linear
potential inSU(3)YM theory [5], and theSU(3) YM vacuum is the type I dual superconductor profiled
by the chromoelectric flux tube and the magnetic monopole current induced around it, which is a novel
feature obtained by our simulations. [6] We further investigate the confinement/deconfinement phase tran-
sition in view of this non-Abelian dual superconductivity picture.[7][8][9] This should be compared with
the maximal option which is adopted first by Cho, Faddeev and Niemi [11]. The restricted field is Abelian
U(1)×U(1) and involves only the Abelian magnetic monopole.[12][13] This is nothing but the gauge
invariant version of the Abelian projection in the maximal Abelian gauge.[14][15]

In this talk, we focus on discriminating between two reformulations, i.e., maximal and minimal options
of SU(3)YM theory for quark confinement from the viewpoint of dual superconductivity. For this purpose,
we measure string tension for the restricted non-Abelian field of both minimal and maximal option in
comparison with the string tension for the original YM field. We also investigate the dual Meissner effect
by measuring the distribution of the chromoelectric flux connecting a quark and an antiquark and the
induced magnetic-monopole current around the flux tube.

2. Gauge link decompositions

Let Ux,µ = Xx,µVx,µ be a decomposition of the YM link variableUx,µ , where the YM field and the
decomposed new variables are transformed by the fullSU(3) gauge transformationΩx such thatVx,µ is
transformed as the gauge link variable andXx,µ as the site variable [10] :

Ux,µ −→U ′
x,ν = ΩxUx,µΩ†

x+µ , (2.1a)

Vx,µ −→V ′
x,ν = ΩxVx,µΩ†

x+µ , Xx,µ −→ X′
x,ν = ΩxXx,µΩ†

x. (2.1b)

For the SU(3) YM theory, we have two options discriminated by its stability group, so called minimal
option and maximal option.

2.1 Minimal option

The minimal option is obtained for the stability gauge group ofH̃ = U(2) = SU(2)×U(1) ⊂ SU(3).
By introducing a color fieldhx = ξ (λ 8/2)ξ † ∈ [SU(3)/U(2)] with λ 8 being the Gell-Mann matrix andξ
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anSU(3) group element, the decomposition is given by solving the defining equation:

Dε
µ [V]hx :=

1
ε

[
Vx,µhx+µ −hxVx,µ

]
= 0, (2.2a)

gx := ei2πq/3exp(−ia0
xhx− i ∑3

j=1a( j)
x u( j)

x ) = 1. (2.2b)

Here, the variablegx is an undetermined parameter from Eq.(2.2a), u( j)
x ’s aresu(2)-Lie algebra valued,

andq has an integer value. These defining equations can be solved exactly [10], and the solution is given
by

Xx,µ = L̂†
x,µ det(L̂x,µ)1/3g−1

x , Vx,µ = X†
x,µUx,µ = gxL̂x,µUx,µ , (2.3a)

L̂x,µ =
(
Lx,µL†

x,µ
)−1/2

Lx,µ , (2.3b)

Lx,µ =
5
3

1+
2√
3
(hx +Ux,µhx+µU†

x,µ)+8hxUx,µhx+µU†
x,µ . (2.3c)

Note that the above defining equations correspond to the continuum version:Dµ [V ]h(x)= 0andtr(h(x)Xµ(x))
= 0, respectively. In the naive continuum limit, we have reproduced the decompositionAµ(x) = Vµ(x)+
Xµ(x) in the continuum theory [3]

Vµ(x) = Aµ(x)− 4
3

[
h(x),

[
h(x),Aµ(x)

]]− ig−14
3

[
∂µh(x),h(x)

]
, (2.4a)

Xµ(x) =
4
3

[
h(x),

[
h(x),Aµ(x)

]]
+ ig−14

3

[
∂µh(x),h(x)

]
. (2.4b)

The decomposition (2.3) is uniquely obtained, if color fields{hx} are obtained. To determine the
configuration of color fields, we use the reduction condition to formulate the new theory written by new
variables (Xx,µ ,Vx,µ ) which is equipollent to the original YM theory. Here, we use the reduction functional:

Fred[hx] = ∑x,µ tr
{
(Dε

µ [Ux,µ ]hx)†(Dε
µ [Ux,µ ]hx)

}
, (2.5)

and then color fields{hx} are obtained by minimizing the functional (2.5).

2.2 Maximal option

The maximal option is obtained for the stability group of the maximal torus groupH̃ =U(1)×U(1)⊂
SU(3). By introducing a set of color fieldsn(3) = ξ (λ 3/2)ξ †, n(8) = ξ (λ 8/2)ξ † ∈ [SU(3)/U(2)] with
λ 3,λ 8 being the Gell-Mann matrices andξ anSU(3) group element, the decomposition is given by solving
the defining equation:

Dε
µ [V]n( j)

x :=
1
ε

[
Vx,µn( j)

x+µ −n( j)
x Vx,µ

]
= 0 j = 3,8, (2.6a)

gx := ei2πq/3exp(−ia3
xn(3)

x − ia(8)
x n(8)

x ) = 1. (2.6b)

The variablegx is an undetermined parameter from Eq.(2.6a) andq has an integer value. These defining
equations can be solved exactly [10], and the solution is given by

Xx,µ = K̂†
x,µ det(K̂x,µ)1/3g−1

x , Vx,µ = X†
x,µUx,µ = gxK̂x,µUx,µ , (2.7a)

K̂x,µ =
(
Kx,µK†

x,µ
)−1/2

Kx,µ , (2.7b)

Kx,µ = 1+6(n(3)
x Ux,µn(3)

x+µU†
x,µ)+6(n(8)

x Ux,µn(8)
x+µU†

x,µ) (2.7c)
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Note that the above defining equations correspond to the continuum version:Dµ [V ]n( j)(x)= 0andtr(n( j)(x)Xµ(x))
= 0, respectively. In the naive continuum limit, we have reproduced the decompositionAµ(x) = Vµ(x)+
Xµ(x) in the continuum theory as [3][11]

Vµ(x) = ∑ j=3,8

{
2tr

(
Aµ(x)n( j)(x)

)
n( j)(x)− ig−1

[
∂µn( j)(x),n( j)(x)

]}
, (2.8a)

Xµ(x) = ∑ j=3,8

[
n( j)(x),

[
n( j)(x),Aµ(x)

]]
. (2.8b)

To determine the configuration of color fields, we use the reduction condition to formulate the new theory
written by new variables (Xx,µ ,Vx,µ ) which is equipollent to the original YM theory. Here, we use the
reduction functional:

Fred[n
(3)
x ,n(8)

x ] = ∑x,µ ∑ j=3,8 tr
{

(Dε
µ [Ux,µ ]n( j)

x )†(Dε
µ [Ux,µ ]n( j)

x )
}

, (2.9)

and then color fields
{

n(3)
x ,n(8)

x

}
are obtained by minimizing the functional (2.9).

It should be noticed that the the resulting decomposition is the gauge invariant version of the Abelian
projection in the maximal Abelian (MA) gauge. Because by using the gauge transformationGUx,µ =
ξ †

x Ux,µξx+µ , the reduction functional (2.9) is rewritten into the functional for the MA gauge fixing:

Fred = ∑x,µ

{
1− 1

4
tr

(GUx,µλ3
GU†

x,µλ3
)
+

1
4

tr
(GUx,µλ8

GU†
x,µλ8

)}
(2.10)

Then, we can show that the decomposition of theV-field in Eq.(2.7) is rewritten into the diagonal part of
the YM field in the MA gauge, i.e., Abelian projection in the MA gauge:

(MAG)Vx,µ = diag
((GUx,µ

)
11

/∣∣(GUx,µ
)

11

∣∣ , (GUx,µ
)

22

/∣∣(GUx,µ
)

22

∣∣ , (GUx,µ
)

33

/∣∣(GUx,µ
)

33

∣∣) . (2.11)

3. Lattice result

We generate the YM gauge field configurations (link variables){Ux,µ} using the standard Wilson
action. We prepare 500 data sets on the lattice with the size of244 at β = 2Nc/g2 (Nc = 3): β = 6.2
every 800 sweeps after 10000 thermalization. We obtain two types of decomposed gauge link variables
Ux,µ = Xx,µVx,µ for each gauge link by using the formula Eqs.(2.3) and (2.7) given in the previous section,

after the color-field configuration{hx} and
{

n(3)
x ,n(8)

x

}
are obtained by solving the reduction condition of

the functional (2.5) and (2.9), respectively. In the measurement of the Wilson loop average defined below,
we apply the APE smearing technique to reduce noises.

3.1 Static potential

We first study the static potential from the Wilson loopC of the T ×R rectangle for both restricted
fields of minimal option and maximal option in addition to the original YM field:

Wmin(T,R) := ∏<x,µ>∈CVmin
x,µ , Wmax(T,R) := ∏<x,µ>∈CVmax

x,µ , WYM (T,R) := ∏<x,µ>∈CUx,µ , (3.1)

respectively. To obtain the static potential, we apply a fitting formula:

− log〈W(T,R)〉 = V(T,R) = T ×V(R) +V2(T,R) (3.2)

V(R) = σR+c+a/R, V2(T,R) = σ2R+c2 +a2/R+b/T +b2R/T (3.3)
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Figure 1: Static potential as a function ofR: Panels show static potentials for YM field (left), for restricted field in
the minimal option (center) and for restriced field in the maximal option (right). Each panel shows plots of data for
NT = 7,9,11cases, and fitted functionsV(T,R).
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Figure 3: (Left) Set up of mesuarement of chromo flux. (Right) The
gauge-invariant correlation operatortr(WLUpL†) between a probe
plaquatteUp and the source Wilson-loopW. .

to data of Wilson loop average〈W(T,R)〉 with R= 1,2, · · · ,11andT = 7, · · · ,11. The conventional Cornell
potential is given by theV(R) part. Figure1 shows the fitting results. Panels from left to right show data
and fitting withNT = 7,8,9 for the original YM field and the restricted fields of minimal and maximal
options, respectively. We find the restricted field dominance in the string tension for both minimal and
maximal options.

Figure2 shows the combined plot of potentials forNT = 10. We obtain string tension in the fitting
range6≤ R≤ 11as

σYM = 0.589±0.036, σmin = 0.492±0.0018, σmax = 0.494±0.0014 . (3.4)

We have the good agreement in the string tension between both options.

3.2 Chromoelectric Flux

Next, we study the dual Meissner effect. For this purpose, we measure the chromo flux created by a
quark-antiquark pair which is represented by the Wilson loopW defined in the right panel of Figure3. The
chromo-field strength, i.e., the field strength of the chromo flux at the positionP is measured by using a
plaquette variableUp as the probe operator for the field strength [16]:

ρUP
:=

〈
tr

(
WLUpL†

)〉
〈tr(W)〉 − 1

Nc

〈tr(Up) tr(W)〉
〈tr(W)〉 , (3.5)

whereL is the Wilson line connecting the sourceW and the probeUp needed to obtain the gauge-invariant
result. Note thatρUP

is sensitive to the field strength rather than the disconnected one. To discriminate the
chromo flux for each option, for the same source represented by the Wilson-loop made of the YM field

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
3
2
0

Abelian monopole or non-Abelian monopole responsible for quark confinement Akihiro Shibata

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  2  4  6  8  10  12

chromo flux (YM) 

Ex
Ey
Ez
Bx
By
Bz

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  2  4  6  8  10  12

chromo flux (Vmin) 

Ex
Ey
Ez
Bx
By
Bz

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  2  4  6  8  10  12

chromo flux (V_{max}) 

Ex
Ey
Ez
Bx
By
Bz

Figure 4: Measurment of the componet of the chromo flux. (Left) original YM field, (Center) ninimal option (Right)
maximal option.

we investigate the chromo flux by changing probe operators,LUpL†,made of the restricted fields in the
minimal and maximal options in place of the original YM field.

Figure 4 shows the result of the measurement of chromo field strength for the original YM field,
restricted field of the minimal and maximal options from left to right panels, respectively. We find that
only the chromoelectric-flux tube is created between a quark and an anti-quark for both options.

Finally, we investigate the dual Meissner effect by measuring the magnetic–monopole currentk in-
duced around the chromoelectric-flux tube created by the quark-antiquark pair. We use the magnetic-
monopole currentk defined by

kµ(x) =
1
2

εµναβ
(
F [V]αβ (x+ ν̂)−F [V]αβ (x)

)
. (3.6)

Note that the magnetic–monopole current (3.6) must vanish due to the Bianchi identity, if there exists no
singularity in the gauge potential. Therefore, the magnetic–monopole current defined in this way can be the
order parameter for the confinement/deconfinement phase transition, as suggested from the dual supercon-
ductivity hypothesis (see left panel of Figure5). Center panel of Fig.5 shows the result of the measurements
of the magnitude

√
kµkµ of the induced magnetic currentkµ obtained according to Eq.(3.6). Therefore, we

find the dual Meissner effect in both options. Furthermore, in the maximal option we can decompose the
magnetic-monople current into the two channels,kµ(x) = k(3)

µ (x)+k(8)
µ (x) which correspond to two types

of color fieldsn(3)
x andn(8),

x respectively. Right panel of Fig.5 shows the result of the decomposition. This
shows that two types of magnetic monopole contribute to confinement in the same weight.

k

q

q
-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  2  4  6  8  10  12

comparison magnetic monople current
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maximal Jm-x n3
maximal Jm-x n8 

Figure 5: Measurement of the induced magnetic-monopole current. (Left) Sketch of induced magnetic monopole
current around the chromoelectric flux tube. (Center) Measurement of the induced magetic monopole currents for
YM-field (red), minimal option (green) and maximal option (blue). (Right) Anatomy of the induced magnetic-
monopole current for the maximal option. The upper to lower plots represent respectively the chromoelectric field
(EZ) and the total induced magnetic-monopole current, and decomposed ones corresponding to the color fieldn(3)

andn(8).
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4. Summary and outlook

By using a new formulation of YM theory, we have investigated two possible types of the dual super-
conductivity picture in theSU(3) YM theory, i.e., the non-Abelian dual superconductivity as the minimal
option and the conventional Abelian dual superconductivity as the maximal option. In the measurement
for both maximal and minimal options, we have found the linear static potential between a pair of quark
and antiquark as for the original YM field and also the V-field dominance in the string tension for each
option. The string tension for both options has almost the same value We, then, have investigated the dual
Meissner effect and found the chromoelectoric-flux tube in each option. We have also found the induced
magnetic-monopole current due to the dual Meissner effect.
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