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1. Introduction

The gluon propagator being gauge dependent quantity is still of fundamental importance. The
nonperturbative computation of this quantity is needed to guide the Dyson–Schwinger equation
(DSE) practitioners with the correct choice of truncation of this infinite set of equations. It is
also believed that the gluon propagator determines the mass scale which is often called effective
gluon mass and which is gauge invariant. Such mass is especially important at finite temperature
when it plays the role of the screening mass. Lattice computations of the gluon propagator provide
a possibility to compute this quantity from the first principles keeping systematic errors under
control. For this reason, lattice results are often used as an input for DSE studies, especially at
small momenta where modern methods to solve DSE do not provide reliable results.

In this paper we compute the gluon propagators in the Landau gauge in SU(2) lattice gluody-
namics close to the phase transition from the confinement to the deconfinement phase.

We obtain results free of Gribov copy effects and make an extrapolation to the infinite volume
limit. Our results are obtained at small lattice spacing a ≈ 0.1fm so we can consider finite lattice
spacing effects to be small.

There are two opposite opinions about behavior of the electric gluon propagator DL(p) at the
phase transition of SU(2) gluodynamics. In [3, 4] where lattices with Nt = 4 and 6 were used, it
was shown that the screening mass extracted from the propagator DL(p) showed specific critical
behavior in the vicinity of the transition temperature. In [5] where lattices with large Nt up to
Nt = 16 were studied conclusion was made that there is no specific signature of deconfinement
associated with DL(p), i.e., the effects observed in [3, 4] are just lattice artifacts.

2. Gauge fixing and extrapolation to the infinite volume limit

We employ the gauge fixing procedure used earlier in our study of the gluon propagator at
finite temperature [1]. In the gauge fixing procedure we employ the Z(2) flip operation proposed
in [7]. Z(2) flip in direction µ consists in flipping all link variables Uxµ attached and orthogonal
to a 3d plane by multiplying them with −1. Such global flips are equivalent to non-periodic gauge
transformations and represent an exact symmetry of the pure gauge action. The Polyakov loops in
the direction of the chosen links and averaged over the 3d plane obviously change their sign. At
finite temperatures we apply flips only to directions µ = 1,2,3. In the deconfinement phase, where
the Z(2) symmetry is broken, the Z(2) sector of the Polyakov loop in the µ = 4 direction has to
be chosen since on large enough volumes all lattice configurations belong to the same sector, i.e.
there are no flips between sectors in the Markov chain of configurations. We choose the sector
with positive Polyakov loop. In the confinement phase one may use a flip in the µ = 4 direction.
However, in [1] it was found that the maximal gauge fixing functional was obtained in the positive
Polyakov loop sector in more than 90 % cases. To save computer time we stick to this sector for
all configurations in the confinement phase. Therefore, in our study the flip operations combine
for each lattice field configuration the 23 distinct gauge orbits (or Polyakov loop sectors) of strictly
periodic gauge transformations into one larger gauge orbit.

We find rather strong finite-volume effects for the propagators over the subcritical domain.
They are substantial throughout the whole infrared domain (p < 1 GeV), as is seen in Fig. 1.
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Therefore, we needed to make extrapolation to the infinite volume. As for the transverse propaga-
tor, it is plagued by Gribov-copy effects and shows only a weak temperature dependence near Tc.
Here we focus our attention on the longitudinal propagator.
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Figure 1: Inverse longitudinal (left panel) and transverse (right panel) propagators as functions of the mo-
mentum at various lattice sizes, T/Tc = 0.98602; only the case of zero Matsubara frequency p4 = 0 is con-

sidered. At ~p 6= 0, the quantinites DL and DT are defined by the formulas DL(~p,0) =
a4

3 ∑
x,b

ei~p~x〈Ab
4(x)A

b
4(0)〉,

DT (~p,0) =
a4

6

3

∑
i=1

∑
x,b

ei~p~x〈Ab
i (x)A

b
i (0)〉, where Ab

µ(x) = Tr
[
(Ux,µ −U†

x,µ)σ
b
]
/2iag .

In principle, we can approach the infinite-volume limit in two steps. First, we fix Ns and
determine DL(p;Ns) using only the data at a given value of Ns. Then we find DL(p;Ns = ∞) using
a fit function of the type

D−1
L (p;Ns)' a0 +

a1

Ns
+

a2

N2
s
+ .... (2.1)

In this case, the quantities DL(p;Ns) at a given value of p and different values of Ns are thought
of as independent and correaltions between them are ignored. Therefore, some information is lost
and the errors in DL(p;Ns = ∞) are overestimated.

For this reason, we use a combined fit over 1/Ns and p for a restricted range of p. We fit the
inverse longitudinal propagator D−1

L (p;Ns) by a function of the form

fA(p;Ns) = c00 + c10 p2
σ + c20(p2

σ )
2 + ... (2.2)

+c01
1
λ
+ c11

p2
σ

λ
+ c21

p4
σ

λ
+ ...

+c02
1

λ 2 + c12
p2

σ

λ 2 + c22
p4

σ

λ 2 + ...

where we introduced dimensionless variables pσ =
p√
σ

and λ = Nsa · Tc =
Ns

Ntξ
, ξ =

T
Tc

and

subscript A labels the fit name. A combined fit involves a greater number of data points, thus
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statistical criteria work better. The use of the polynomial dependence on p2 in (2.2) is motivated
by results of Refs. [1] and [2].

We considered fit functions (2.2) with the number of parameters varying from 6 to 11. and
employ the regression analysis to choose the optimal fit. To illustrate this procedure, we compare
fits with 9 (A = Q) and 7 (A = J) parameters for 40≤ Ns ≤ 88 and 0 < p < 1 GeV.

First we compute χ
2(A) = ∑

pσ ,λ

(
D−1

L (pσ ,λ )− fA(pσ ,λ ;~θ)
)2

δ (pσ ,λ )2 for each fit A = Q,J;

here ~θ is the vector of the parameters; ~θ = (c00,c10,c20,c30,c01,c11,c21) for the fit J and
~θ = (c00,c10,c20,c30,c01,c11,c21,c12,c22) for the fit Q (see formula (2.2)).

Now we compare fit functions fQ and fJ depending on nQ and nJ parameters, respectively
(nQ > nJ). If the data sample has N points (N = ∑pσ ,λ 1) then the distribution of the quantity
(referred to as the Fisher variable)

f =

[
(χ2(J)−χ

2(Q))/(nQ−nJ)
][

χ
2(Q)/(N−nQ)

] (2.3)

should be compared with the Fisher distribution, whose probability density function PnQ−nJ ,N−nQ(z)
is defined by the formula

P2p,2q(z) =
Γ(p+q)
Γ(p)Γ(q)

ppqq zp−1

(q+ pz)p+q , z≥ 0. (2.4)

In the case p = 1,q� 1,q� f the respective cumulative distribution function (CDF)

Fth(z) =
∫ z

0
P(x)dx can be approximated by F̃th(z) = 1− exp(−z), which is independent of q. In

the case under consideration, nJ = 7, nQ = 9, N ' 100 and all requared conditions are fulfiled.
If the variable f is Fisher distributed then both fit functions work well and the J fit should be

chosen because it involves less number of the parameters. Otherwise (if f lies far on a tail of the
Fisher distribution) the quality of the Q fit is better than that of the J fit.

We compare theoretical and empirical CDF and employ the Kolmogorov-Smirnov test based
on the theorem that, as N → ∞, the random variable x =

√
N sup

f
|FN( f )− Ftheor( f )| is

Kolmogorov distributed with the CDF K(x) =
∞

∑
j=−∞

(−1) je−2 j2x2
.

In the case under consideration, |FN( f )−Ftheor( f )| approaches its peak (0.531) at f = 1.996,
N = 12, therefore, x = 1.839 and K(x) = 0.997; thus we arrive at the conclusion that the Q fit is
better than the J fit with the p-value≈ 0.003.

3. Screening masses

The first computation of the electric screening mass mE from the longitudinal gluon propagator
in momentum space DL(p) was presented in Ref. [1] for SU(2) theory. The electric screening mass
is conventionally defined in terms of the longitudinal propagator, M = 1/

√
DL(0). Thus it depends

on the normalization condition. The authors of [3, 4, 2] used the normalization condition

DMOM
L (p2 = µ

2) =
1

µ2 , (3.1)
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referred to as the MOM normalization; the authors of [1, 6, 2] used the so called on-mass-shell
(OMS) normalization defined by the formula

1
DOMS

L (p)
= M2

OMS + p2 +O(p4). (3.2)

The respective renormalization factors are defined by

DMOM
L (p) = ZMOMDbare

L (p); DOMS
L (p) = ZOMSDbare

L (p) (3.3)

where Dbare
L (p) = DL(p) is the unrenormalized propagator obtained from simulations (see the cap-

tion to Fig.1).
In the infinite-volume limit, DOMS

L (0) = c10/c00 has unappropriately large errors of extrapola-
tion due to uncertainty in c10 and we don’t consider it here. DMOM

L (p) behaves similar to Dbare
L (p)

because ZMOM has only a weak dependence on the temperature. Thus we focus our attention on
DMOM

L (p).
Since MMOM has a minimum close to Tc but definitely below it, DL(0) takes its maximum

below Tc.
To clarify the question of critical behavior, we consider MMOM(ξ ) over the range1 0.99 < ξ <

1.06 and fit it to the following function:

ξ < d : MMOM ' a−q(d−ξ )b; (3.4)

ξ > d : MMOM ' a+ c(ξ −d)b. (3.5)

The results of this 5-parameter fit with 5 degrees of freedom are presented in Fig. 2. Therewith, we
can assume a polynomial dependence of MMOM on the temperature, see Fig. 2.
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Figure 2: Parameters obtained in the fit: a= 0.217(3) GeV; d = 1.0085(3); b= 0.63(3); c= 0.93(11) GeV;
q = 1.23(19) GeV. The fit describing critical behavior shown in the left panel is compared to the polynomial
fit describing smooth behavior in the right panel.

However, a more detailed analysis may be required. The results of the extrapolation to the
infinite-volume limit can depend on the domain in the pσ−λ plane over which our fit is performed.

1We use the notation ξ = T/Tc.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
3
2
1

Gluon propagators near the phase transition V.G. Bornyakov

The error associated with the choice of this domain was taken into account only partially: we
varied the upper cutoff momentum over the range 0.9 GeV < pcut < 1.1 GeV and found that the
dependence on such variations can be neglected. For a more thorough extrapolation larger statistics
is needed.

4.
〈
A2〉 asymmetry

Studies of the dimension two condensate
〈
A2
〉

in gauge theories were started in Ref. [8], where
it was shown that it measures topological structures responsible for the confinement-deconfinement
transition in the compact electrodynamics. In the last years this condensate has received consider-
able attention (see e.g. [9], and references therein). It plays an important role in the studies of the
infrared properties of the Yang–Mills theories.

The
〈
A2
〉

condensate is defined as〈
A2〉= g2〈Aa

µ(x)A
a
µ(x)

〉
. (4.1)

At nonzero temperature one can consider two condensates〈
A2

E
〉
= g2〈Aa

4(x)A
a
4(x)

〉
,

〈
A2

M
〉
= g2〈Aa

i (x)A
a
i (x)

〉
.

The
〈
A2
〉

asymmetry introduced in Ref. [10] is defined as

∆A2 ≡< A2
E >−1

3
< A2

M > . (4.2)

The asymmetry is ultraviolate finite [10],[11].
The quantity ∆A2 was studied numerically in Ref. [10] at low and high temperature as well as

near the phase transition. Here we only consider vicinity of the phase transition. For this range of
temperature it was found in [10] that has a sharp maximum at the temperature T ≈ Tc. The location
of the maximum Tmax was determined as Tmax = 1.00(3)Tc.

We compute ∆A2 on the same set of lattices as was used above for propagators DL,T (p) com-
putations. We find Tmax/Tc = 0.979(5), i.e. the maximum of ∆A2 is below Tc.

We find that, in the region around Tc, ∆A2 shows behavior analogous to that of MMOM. To
describe this behavior we employ the fit function:

ξ < d : ∆A2 = a+q(d−ξ )b; (4.3)

ξ > d : ∆A2 = a− c(ξ −d)b. (4.4)

This 5-parameter fit performed over the range 0.99 < ξ < 1.06 (10 data points) gives χ2/Nd.o. f . =

1.00 and parameters

d = 1.0085±0.0007, a = 2.59±0.09, (4.5)

c = 6.59±0.58, q = 25.14±6.04, (4.6)

b = 0.62±0.05. (4.7)

We compare the fit function (4.3, 4.4) with the 5-parameter polynomial fit function

P(ξ ) = r0 + r1ξ + r2ξ
2 + r3ξ

3 + r4ξ
4, (4.8)
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see Fig.3, right panel. Here we obtain
χ2

Nd.o. f .
= 2.72, the corresponding p-value = 1.9% as con-

trasted to the p-value = 42% in the case of fit function (4.3, 4.4). This comparison gives support to
the critical behavior of ∆A2 .
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Figure 3: Comparison of two fits: (4.3, 4.4) versus (4.8)
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