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1. Introduction

Neutral kaon mixing provides a description of indirect CP violation in the Standard Model

(SM), which was discovered in the decay of KL→ ππ in 1964 [1]. In the SM this mixing is me-

diated by the W-boson and one of the two leading order contributions is given by the box diagram

on the left of Diagram.1. In lattice simulations we cannot directly measure the contribution of

this diagram but the operator product expansion (OPE) allows us to separate the low and high en-

ergy scales and compute the low energy, non-perturbative matrix element from the effective vertex

shown on the right.
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Diagram 1: Leading order contribution to neutral kaon mixing in the Standard Model, the right

picture illustrates the effective vertex we measure. U1,U2 can be either u,c or t.

In the SM there is only one effective vertex, if we generalise to different mediating particles

we can have a larger basis of operators as we have a larger possibility of dirac-color structures.

Measuring these new operators can give a model-independent insight into how beyond the Standard

Model (BSM) theories could interact with QCD and help constrain the scale of new physics [2].

Collaboration BK B2 B3 B4 B5

RBC-UKQCD [3] 0.53(2) 0.43(5) 0.75(9) 0.69(7) 0.47(6)

ETM [4] 0.51(2) 0.47(2) 0.78(4) 0.75(3) 0.60(3)

ETM [5] 0.51(2) 0.46(3) 0.79(5) 0.78(5) 0.49(4)

SWME [6] 0.52(2) 0.53(2) 0.77(6) 0.98(6) 0.75(8)

Table 1: Previous collaboration results for the bag parameters in MS renormalised at µ = 3GeV,

statistical and systematic errors have been added in quadrature.

Recently, several groups have measured a dimensionless prescription of these BSM opera-

tors (their bag parameters) in modern, dynamical fermion simulations. Their results are shown in

Tab.1. There is some tension between these measurements; our previous work [3] used a single

lattice spacing, n f = 2+1 flavours and renormalised the operators non-perturbatively using the in-

termediate, exceptional, RI-MOM scheme. The works [4, 5] also used the RI-MOM scheme, have

n f = 2 and n f = 2+1+1 flavours respectively and performed an a2→ 0 extrapolation. The work
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of [6] used n f = 2+1 flavours, renormalised their operators perturbatively and also performed an

a2→ 0 extrapolation.

We use the domain wall fermion (DWF) prescription with n f = 2 + 1 dynamical fermion

flavours. This prescription has good chiral symmetry properties and leading O(a2) scaling. We

extend our previous work [3] by adding a second lattice spacing to quantify discretisation effects

and by using both exceptional and non-exceptional kinematics for our intermediate renormalisation

schemes.

2. Background

2.1 Operators

The ∆S = 2 operators we consider are defined in the SUSY basis [7] (a and b are color indices

and Dirac indices have been suppressed),

O1 =
[

s̄aγµ(1− γ5)da

][

s̄bγµ(1− γ5)db

]

,

O2 =
[

s̄a(1− γ5)da

][

s̄b(1− γ5)db

]

, O3 =
[

s̄a(1− γ5)db

][

s̄b(1− γ5)da

]

,

O4 =
[

s̄a(1+ γ5)da

][

s̄b(1+ γ5)db

]

, O5 =
[

s̄a(1+ γ5)db

][

s̄b(1+ γ5)da

]

.

(2.1)

2.2 NPR

Our operators need to be renormalised, we perform this non-perturbatively in a scheme acces-

sible to the lattice using both exceptional (RI-MOM) and non-exceptional kinematics (RI-SMOM)

[8, 9]. The operators mix multiplicatively under renormalisation, the pattern of which for DWF is

that of the continuum i.e. O1 belongs to a (27,1) irreducible representation of SU(3)L×SU(3)R,

whereas O2 and O3 transform like (6, 6̄) and O4 and O5 like (8,8) [10]. Schematically, we compute

a renormalisation matrix that mixes operators and has renormalisation condition that at the scale µ

our Landau gauge fixed vertex function matches its tree level perturbation theory result,

OMS
i (µ) =CMS←MOM

i j (µ)

(

lim
a2→0

ZMOM
jk (µ)

Z2
q

Ok(a)

)

,

ZMOM(µ)P(Λ(p2))|p2=µ2 = tree.

(2.2)

As discussed in [11] the RI-MOM scheme suffers from pion pole contamination [12]. We must

subtract these un-physical poles from our renormalisation matrix to obtain physical results, this is

a non-trivial procedure and makes it difficult to quantify its systematics. The RI-SMOM scheme

does not suffer from this problem.

2.3 Measurement types

We intend to measure various dimensionless quantities based upon the effective operators of

Eq.2.1. In [13] and [14] ratios were suggested that give directly the BSM to SM contribution at the

physical point,

Ri(µ) =

[

f 2
K

m2
K

]

Expt.

[

m2
K

f 2
K

〈K̄0|Oi(µ)|K
0〉

〈K̄0|O1(µ)|K0〉

]

Latt.

. (2.3)
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Groups also measure the bag parameters, which give the ratio of the matrix element to its

vacuum saturation approximation (VSA),

BK(µ) =
〈K̄0|Oi(µ)|K

0〉
8
3
m2

K f 2
K

, Bi(µ) =
〈K̄0|Oi(µ)|K

0〉

Nim
2
K f 2

K

(

mK

mu(µ)+ms(µ)

)2
, (2.4)

with normalisation factors Ni =
(

− 5
3
,

1
3
,2, 2

3

)

.

In [15] and [16] combinations of bag parameters were suggested such that the leading chiral

logarithms of these quantities in chiral perturbation theory cancel, we call these the golden combi-

nations,

G23(µ) =
3B2(µ)

5B2(µ)−2B3(µ)
, G45(µ) =

B4(µ)

B5(µ)
,

G24(µ) = B2(µ)B4(µ), G21(µ) =
B2(µ)

BK(µ)
.

(2.5)

The intention of this work is not only to assess the intermediate-scheme dependence but also

to measure the various chiral and discretisation effects of these dimensionless quantities.

3. Methodology

Volume a−1 [GeV] amsea
ud (= amval

ud ) mπ [MeV]

243×64×16

1.785(5) 0.005, 0.01, 0.02 340, 430, 560

amsea
s amval

s am
phys
s

0.04 0.04, 0.035, 0.03 0.03224(18)

a−1 [GeV] amsea
ud (= amval

ud ) mπ [MeV]

323×64×16

2.383(9) 0.004, 0.006, 0.008 300, 360, 410

amsea
s amval

s am
phys
s

0.03 0.03, 0.025 0.02477(18)

Table 2: Summary of our lattice ensembles, more details can be found in [17]. For the coarse

lattice (a−1 = 1.785 GeV) we use 155,152 and 146 measurements for the am = 0.005,0.01 and

0.02 ensembles respectively, although in the final analysis the am = 0.02 ensemble is omitted. For

the fine lattice we perform 129,186 and 208 measurements for the am = 0.004,0.006 and 0.008

ensembles respectively. The most recent values of a−1 and the physical light and strange quarks

can be found in [18].

An overview of the ensembles used in this work is in Tab.2. We use Coulomb gauge fixed

wall sources, the coarse ensemble was fixed to this gauge using the time-slice by time-slice FASD

algorithm of [19], the fine ensemble data was generated as part of the analysis of [9]. For the

non-perturbative renormalisation we use momentum sources [20] and partially twisted boundary

conditions [8]. The ensembles considered in this work are at heavier pion mass than the physical

point, we use unitary light valence quarks to extrapolate to the physical pion mass and partially

quenched strange quarks to interpolate to the physical strange mass.
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4. Results

Fig.1 illustrates the chiral and continuum behaviour of the various quantities from Sec.2.3

renormalised at 3 GeV in the RI-SMOM scheme. The coarse ensemble’s data and chiral fit is

in red, the fine ensemble’s is in black and the combined chiral-continuum result is blue with the

physical point defined as a filled blue symbol.
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(b) BK , B4 and B5
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(c) B2 and B3
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Figure 1: Preliminary combined chiral and continuum fits for the ratios (1a), bag parameters (1b

and 1c) and the golden parameters (1d and 1e) in the RI-SMOM scheme, renormalised at 3GeV.

The coarse ensemble’s data is red, the fine’s black. The continuum limit evaluation is blue and the

chiral limit is on the left of the figures where the line ends. The combined chiral-continuum result

is a filled blue symbol.
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For the bag parameters we see reasonably linear behaviour in m2
π as we approach the chiral

limit (Figs.1b and 1c) and large discretisation effects upon taking the a2→ 0 limit. For the ratios

(Fig.1a) we see consistent behaviour with our previous work [3], i.e. large ratios of BSM to SM

matrix elements. We note that upon taking the a2→ 0 limit these ratios are larger than those of our

fine ensemble.

As expected, the approach to the chiral limit for the golden combinations is particularly flat

(Figs.1d and 1e) but we do measure large discretisation effects, particularly for the quantity G23.

More pronounced discretisation effects are measured for these quantities in the RI-MOM scheme

but are not shown in Fig.1.

Collaboration BK B2 B3 B4 B5

RBC-UKQCD [3] 0.53(2) 0.43(5) 0.75(9) 0.69(7) 0.47(6)

ETM [4] 0.51(2) 0.47(2) 0.78(4) 0.75(3) 0.60(3)

ETM [5] 0.51(2) 0.46(3) 0.79(5) 0.78(5) 0.49(4)

SWME [6] 0.52(2) 0.53(2) 0.77(6) 0.98(6) 0.75(8)

RBC-UKQCD (RI-MOM) 0.53(1) 0.42(1) 0.66(5) 0.75(3) 0.56(5)

RBC-UKQCD (RI-SMOM) 0.53(1) 0.49(2) 0.74(7) 0.92(2) 0.71(4)

Table 3: Preliminary results for the bag parameters matched to MS at µ = 3GeV via the inter-

mediate RI-MOM and RI-SMOM schemes. Statistical and systematic errors have been added in

quadrature, we have not included the perturbative matching systematic in our error. Our collabora-

tion’s most up to date and accurate evaluation of BK should be taken from [18].

In Tab.3 we compare the results of this work (the two rows at the bottom of the table) with the

results of other collaborations from Tab.1. For the RI-MOM intermediate scheme we are consistent

with our previous evaluation at a single lattice spacing and in decent agreement with the most recent

ETM evaluation apart from some slight tension in B3. For the RI-SMOM intermediate scheme1 we

are in considerably better agreement with the most recent results of the SWME collaboration.

5. Conclusions

We have attempted to address a tension between different evaluations of the various ∆S = 2

matrix elements required for K0− K̄0 mixing in and beyond the Standard Model. With the addition

of a second lattice spacing we were able to evaluate our discretisation errors and with the use of non-

exceptional kinematics in our renormalisation procedure we appear to have an answer as to where

this tension originates. It seems that the RI-MOM non-perturbative renormalisation procedure, and

the pion pole subtraction this scheme requires, induces a systematic that was previously not well

understood.
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