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We present a lattice QCD determination of the vector and scalar form factors of the kaon semilep-
tonic decay K → π`ν , which is relevant for the determination of the CKM matrix element |Vus|
from experimental data. Our results are based on the gauge configurations produced by the Euro-
pean Twisted Mass Collaboration with N f = 2+1+1 dynamical fermions. We simulated at three
different values of the lattice spacing and with pion masses as small as 210 MeV. Our estimate for
the vector form factor at zero 4-momentum transfer is f+(0) = 0.9709(46), where the uncertainty
is both statistical and systematic. By combining our result with the latest experimental value of
f+(0)|Vus| we obtain |Vus| = 0.2230(11), which satisfies the unitarity constraint of the Standard
Model at the permille level using the updated determination of |Vud | coming from superallowed
nuclear β decays. We present also the momentum dependence of the vector and scalar form fac-
tors in the whole range of values of the squared 4-momentum transfer measured in K`3 decays,
obtaining a good agreement with the experimental data.
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1. Introduction and simulation details

In the Standard Model (SM) the relative strengths of the flavor-changing weak currents are
parametrized by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1]. The accurate determination
of its matrix elements is therefore crucial both for testing the SM and for searching new physics.

In this contribution we present a new determination of the matrix element |Vus| coming from
the study of the semileptonic K → π`ν decay on the lattice. We use the ensembles of gauge
configurations produced by the European Twisted Mass (ETM) Collaboration with four flavors of
dynamical quarks (N f = 2+ 1+ 1), which include in the sea, besides two light mass-degenerate
quarks, also the strange and the charm quarks with masses close to their physical values [2].

The gauge ensembles and the simulations are the same adopted in Ref. [3] to determine the
up, down, strange and charm quark masses, as well as in Ref. [4] to determine the leptonic decay
constants fK/ fπ , fD and fDs . In particular we use three different values of the lattice spacing
to allow for a controlled extrapolation to the continuum limit, the smallest spacing being equal
to ' 0.06 fm, and different lattice volumes with simulated pion masses ranging from ' 210 to
' 450MeV. The physics described by our lattice simulations corresponds to the isospin symmetric
limit of QCD, where mu = md , assuming also zero quark electric charges.

At each lattice spacing different values of the light and strange quark masses, m` and ms, have
been considered to study the dependence of the form factor f+(0) on m` and to perform a small
interpolation in ms using a simple quadratic spline. For the physical values of m` and ms we use
the ones determined in Ref. [3]. Valence quarks are simulated at different values of the spatial
momentum using non-periodic boundary conditions [5, 6, 7]. Both the spacelike and the timelike
regions of the squared 4−momentum transfer q2 are covered. The semileptonic vector and scalar
form factors, f+(q2) and f0(q2), are extracted from suitable combinations of three-point correlation
functions to study their dependence on q2, the light-quark mass m` and the lattice spacing a.

Our estimate for the vector form factor at zero 4-momentum transfer is

f+(0) = 0.9709 (45)stat(9)syst = 0.9709 (46) . (1.1)

By combining our result with the latest experimental value of f+(0)|Vus|= 0.2165(4) from Ref. [8]
we obtain |Vus|= 0.2230(11), which satisfies the unitarity constraint of the SM at the permille level
using the updated determination of |Vud | coming from superallowed nuclear β decays, i.e. |Vud |=
0.97417(21) [9].

We present also the q2-dependence of the vector and scalar form factors, f+(q2) and f0(q2),
in the whole range of values of q2 measured in K`3 decays. We fit our results extrapolated to
the physical point adopting the same dispersive parameterization [10, 11] used to describe the
experimental data [12, 8]. The dispersive fit depends on two parameters, Λ+ and C, which represent
respectively the slope of the vector form factor f+(q2) at q2 = 0 (in units of M2

π ) and the scalar form
factor f0(q2) at the (unphysical) Callan-Trieman (CT) point q2 = q2

CT ≡M2
K −M2

π [13]. Our final
results are

Λ+ = 24.2 (1.2) ·10−3 , log(C) = 0.1998 (138) , (1.2)

which compare positively with the latest experimental results [8]

Λ
exp
+ = 25.75 (36) ·10−3 , log(C)exp = 0.1985 (70) . (1.3)
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2. Extraction of the semileptonic form factors

The matrix elements of the strangeness changing vector current V̂µ between kaon and pion
states decompose into two form factors, f+(q2) and f−(q2), as

〈V̂µ〉 ≡
〈
π(p′)|V̂µ |K(p)

〉
= (pµ + p′µ) f+(q2)+(pµ − p′µ) f−(q2) (2.1)

with qµ ≡ pµ − p′µ . The scalar form factor f0 is defined as

f0(q2) = f+(q2)+
q2

M2
K−M2

π

f−(q2) (2.2)

and therefore the relation f+(0) = f0(0) is satisfied by construction. The form factor f0(q2) is pro-
portional to the 4-divergence of 〈V̂µ〉, which in turn, thanks to the vector Ward-Takahashi identity,
is related to the matrix element of the strangeness changing scalar density Ŝ between kaon and pion
states, leading to

〈Ŝ〉 ≡ 〈π(pπ)|Ŝ|K(pK)〉=
M2

K−M2
π

ms−m`
f0(q2) . (2.3)

Equations (2.1) and (2.3) represent a system of redundant relations between the two form factors
f+(q2) and f0(q2) and the matrix elements 〈V̂µ〉 and 〈Ŝ〉. The latter can be extracted from the (Eu-
clidean) time dependence of suitable combinations of three-point correlation functions connecting
the initial and final pseudoscalar mesons through either the (bare) local vector current Vµ or the
(bare) scalar density S. Indeed we calculate the following quantities

R(V )
µ (t;~pK ,~pπ) ≡ 4pKµ pπµ

CKπ
Vµ

(t, T
2 ;~pK ,~pπ) CπK

Vµ
(t, T

2 ;~pπ ,~pK)

Cππ
Vµ

(t, T
2 ;~pπ ,~pπ) CKK

Vµ
(t, T

2 ;~pK ,~pK)
, (2.4)

R(S)(t;~pK ,~pπ) ≡ R(V )
0 (t;~0,~0) K

CKπ
S (t, T

2 ;~pK ,~pπ) CπK
S (t, T

2 ;~pπ ,~pK)

CKπ
S (t, T

2 ;~0,~0) CπK
S (t, T

2 ;~0,~0)
, (2.5)

where K is a simple factor depending on meson and quark masses, and t is the time distance
between the insertion of the local currents and the source1. Notice that Eqs. (2.4)-(2.5) do not
depend on any renormalization constant and involve only three-point correlation functions. In
Eq. (2.5) the ratio R(V )

0 (t;~0,~0) is introduced to take advantage of the high-precision determination of
the scalar form factor f0 at kinematical end-point q2 = q2

max ≡ (MK−Mπ)
2 via the time component

of the vector current [14], namely

R(V )
0 (t;~0,~0) −−−−−−−−−−−−→

t�a, (T/2−t)�a
[(MK +Mπ) f0(q2

max)]
2 . (2.6)

The use of Eq. (2.5) improves significantly the statistical precision of the extracted matrix element
〈Ŝ〉 with respect to the standard strategy based on the ratio between three-point and two-point
correlation functions.

At large time distances one has

R(V )
µ (t;~pK ,~pπ) −−−−−−−−−−−−→t�a, (T/2−t)�a

|〈π(pπ)|V̂µ |K(pK)〉|2 , (2.7)

R(S)(t;~pK ,~pπ) −−−−−−−−−−−−→t�a, (T/2−t)�a
|〈π(pπ)|Ŝ|K(pK)〉|2 , (2.8)

1The time distance between the source and the sink is kept fixed at half of the time extension of the lattice T/2.
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and therefore the form factor f+(q2) and f0(q2) can be determined by minimizing the χ2-variable
constructed using all the extracted matrix elements 〈V̂µ〉 and 〈Ŝ〉. The use of the information con-
tained both in 〈V̂µ〉 and in 〈Ŝ〉 helps in increasing the precision of the extracted vector and scalar
form factors with respect to the strategy of adopting only the information contained in 〈V̂µ〉, which
was previously adopted in Ref. [15].

After a small interpolation of our lattice data to the physical value of the strange quark mass
ms = 99.6(4.3)MeV determined in Ref. [3], we present in the next Section the extrapolation of our
results for the form factors f+(q2) and f0(q2) at the physical point and in the continuum limit.

3. Combined chiral and continuum extrapolations

In this Section we extrapolate the form factors f+(q2) and f0(q2) to the physical point in a wide
range of values of q2, which includes the q2-region accessible to experiments, i.e. from q2 = 0 to
the kinematical end-point q2 = q2

max = (MK−Mπ)
2→ 0.129GeV2.

We perform a combined fit of the q2-, m`- and a2-dependencies of the form factors using
either the prediction inspired SU(2) ChPT proposed in Ref. [16] or a modified z-expansion. In
both cases we include in our analysis the constraint arising from the CT theorem [13], which
relates in the SU(2) chiral limit the scalar form factor f0(q2) calculated at the unphysical point
q2 = q2

CT = M2
K−M2

π to the ratio of the leptonic decay constants fK/ fπ .
Following Ref. [16] the first Ansatz can be derived from the next-to-leading (NLO) SU(3)

ChPT predictions for the kaon and pion loop contributions to the form factors [17, 18], by per-
forming an expansion in powers of the variable x≡M2

π/M2
K keeping only the O(x), O(x logx) and

O(log(1− s)) terms, where s≡ q2/M2
K . Moreover, taking into account that a simple pole Ansatz is

able to reproduce quite well our lattice data for each gauge ensemble, and that the extracted slopes
exhibit an almost linear dependence on the light-quark mass m` and on the squared lattice spacing
a2, our first Ansatz has the following form

f+,0(q2) =
f SU(2)
+ (0)−

[
xT 1

+,0(s)+T 2
+,0(s)

]
M2

K/(4π f )2

1−q2(1+P+,0M2
π +D+,0a2 +KFSE

+,0 )/M2
V,S

(
1+A+,0q2 +Da2) , (3.1)

where the functions T 1,2
+,0(s) are explicitly given in Ref. [16] and, according to the SU(2) ChPT

expansion [19], f SU(2)
+ (0) can be written as

f SU(2)
+ (0) = F+

[
1− 3

4
ξ log(ξ )+C1ξ +C2ξ

2
]

(3.2)

with ξ ≡ M2
π/(4π f )2. In Eq. (3.1) the quantity KFSE

+,0 is a phenomenological term that takes into
account the finite volume effects observed in the form factor slopes by comparing the data for the
ensembles A40.24 and A40.32, which differ only by the lattice size (see Ref. [3]), while MV (MS)
is the mass of the low-lying vector (scalar) resonance. The value of MV is fixed at the mass of the
K∗(892) vector resonance, while MS is left as a free parameter.

The second Ansatz is a modified version of the z-expansion of Ref. [20], namely

f+,0(q2) =
f SU(3)
+ (0)+ Ã+,0

[
z− z0 +(z2− z2

0)/2
]
+ D̃a2

(
M2

K−M2
π

)2

1−q2(1+ P̃+,0M2
π + D̃+,0a2 + K̃FSE

+,0 )/M̃2
V,S

, (3.3)
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where z = (
√

t+−q2−
√

t+− t0)/(
√

t+−q2 +
√

t+− t0), t0 ≡ (MK +Mπ)
(√

MK−
√

Mπ

)2, t+ ≡
(MK +Mπ)

2 and z0 ≡ z(q2 = 0). In Eq. (3.3), according to the SU(3) ChPT expansion [17, 18],
f SU(3)
+ (0) can be written as

f SU(3)
+ (0) = 1+ f2 +∆ f , (3.4)

where f2 is the NLO term, which does not depend on any low-energy constant and it is calculable
in terms of meson masses [17, 18], while the quantity ∆ f represents higher order corrections.
According to the Ademollo-Gatto theorem [21] we parametrize the latter as

∆ f =
(
M2

K−M2
π

)2 [
∆0 +∆1M2

π

]
. (3.5)

The quality of the global fitting procedures, based on Eq. (3.1) for the SU(2) ChPT Ansatz and
Eq. (3.3) for the modified z-expansion one, is illustrated in Fig. 1.
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Figure 1: Lattice data for the vector and scalar form factors versus q2/M2
K for the ETMC ensembles A50.32,

B35.32 and D20.48, corresponding to three values of the lattice spacing (see Ref. [3]), compared with the
results of the global fitting procedures based on Eq. (3.1) (left panel) and Eq. (3.3) (right panel), shown as
solid lines. The dashed lines represents the uncertainties of the fits.

Our fitting Ansätze are then used to extrapolate the form factors to the physical point and in
the continuum limit. Our findings compares positively with the results of the dispersive fit of the
experimental data performed in Ref. [8], as shown in Fig. 2.

Combining all the analyses we get the results reported in Eqs. (1.1)-(1.2) for the form factor
f+(0) and for the dispersive parameters Λ+ and log(C). In Eqs. (1.1)-(1.2) the statistical uncertainty
includes also the error induced by the fitting procedure and the uncertainties of all the input param-
eters needed for the analyses, namely the physical values of the light and strange quark masses and
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Figure 2: Results for the vector (black area) and scalar (red area) form factors, obtained at the physical point
including both statistical and systematic uncertainties and multiplied by |Vus|= 0.2230, versus q2. The cyan
solid lines represent the results of the dispersive fit of the experimental data from Ref. [8].

the lattice spacing, determined in Ref. [3]. The systematic error includes the uncertainties related
to the chiral extrapolation, the discretization and finite volume effects, which will be discussed in
details in a forthcoming publication [22].

4. Calculation of |Vus|

Combining our result (1.1) with the updated experimental value of f+(0)|Vus| = 0.2165(4)
from Ref. [8] we can estimate the CKM matrix element |Vus| obtaining

|Vus|= 0.2230 (4)exp (11) f+(0) = 0.2230 (11) , (4.1)

which can be compared with the determination |Vus|= 0.2271(29) obtained from K`2 decays using
the ratio of the leptonic decay constants fK+/ fπ+ determined in Ref. [4].

Using our result (4.1) and taking the values |Vud |= 0.97417(21) from the superallowed nuclear
β−decays [9] and |Vub|= 4.13(49) ·10−3 from the PDG [23], we can test the unitarity of the first-
row of the CKM matrix obtaining

|Vud |2 + |Vus|2 + |Vub|2 = 0.9988 (9) from K`3 [this work] ,

|Vud |2 + |Vus|2 + |Vub|2 = 1.0008 (14) from K`2 [4], (4.2)

which both confirm the SM constraint at the permille level.
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