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1. Indirect CP violation

Indirect CP violation in the K0 −K0 system arises from mixing between the |K0⟩ and |K0⟩
states and in the Standard Model is caused by ∆S = 2 weak interactions, second order in the Fermi
constant GF . The strength of this mixing is determined by the parameter ε which has the exper-
imental value ε = 2.228(11)× 10−3. It is predicted by the Standard Model with less precision,
ε = 2.13(23)×10−3 [1], where the dominant error comes from the uncertainly in the CKM matrix
element Vcb. The two types of W -exchange diagrams which give rise to ε in the standard model are
shown in Fig. 1 The largest contribution comes from short distances and the box diagram in Fig. 1a
dominates with the “disconnected” diagram in Fig. 1b suppressed by α2

s . The short-distance contri-
bution of the diagrams in Fig. 1 is described by the local, second order, effective weak Hamiltonian

H ∆S=2
eff =

G2
F

16π2

[
λ 2

c ηccS0(xc)+λ 2
t ηttS0(xt)+2λcλtηctS0(xc,xt)

]
b(µ)OLL (1.1)

where S0 is the Inami-Lim function, λq =V ∗
qdVqs for q = u, c and t and xq = m2

q/M2
W with MW the

W boson mass. The correction factors ηcc, ηtt and ηct provide higher order QCD corrections [2]
and factor b(µ) depends on the normalization scale µ used to define the operator OLL:

OLL = sγµ(1− γ5)dsγµ(1− γ5)d. (1.2)

Lattice QCD is required to compute the matrix element of OLL between |K0⟩ and |K0⟩ which
is needed to determine ε , a matrix element usually expressed in terms of the parameter BK =

3⟨K0|OLL|K0⟩/8 f 2
KM2

K which has been determined using lattice QCD to an accuracy of 2%.
Given the current high-precision of BK and the prospects that Vcb either becomes more accu-

rately known or that ε and the Standard Model might be used to determine it, we should examine
the other errors affecting the calculation of ε . As emphasized by Buras, et al. [3] the box diagram
in Fig. 1 also contributes to ε when the two W bosons are exchanged at positions that are separated
by distances at the QCD scale. Such a “long-distance” contribution from each type of diagram
shown in Fig. 1 can be represented by the diagrams shown in Fig. 2 where both W propagators
have been replaced by vertices and these vertices are integrated over QCD-scale separations.
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Figure 1: The Inami-Lim box diagram (left) gives the largest contribution to ε . In that case one of
the internal quarks is t and the other t or c. The right diagram shows the second possible topology
which can contribute to ε but which enters only at order α2

s .
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In order to understand such long-distance contributions, it is useful to recall more detail of the
structure of the amplitudes described by the diagrams shown in Fig. 1 and the GIM cancellation
that occurs. A convenient approach uses a Feynman path integral representation of the amplitudes
contributing to K0 −K0 mixing and introduces a Feynman propagator Sq[A](x,y) for a quark q
propagating in the background of a color gauge field Aµ(z), the path integral variable remaining
after the fermion integrations have been performed. The sum over flavors for one of the two internal
quark lines in both parts of Fig. 1 then can be written as follows:

∑
q=u,c,t

λqγµ(1− γ5)Sq[A](x,y)γν(1− γ5) (1.3)

= ∑
q=u,c,t

λqγµ(1− γ5)
{

Sq[A](x,y)−Sc[A](x,y)
}

γν(1− γ5).

The left-hand side of Eq. (1.3) shows the sum over the three types of “up” quark, weighted
by the product of CKM matrix elements λq = V ∗

qdVqs. The right-hand side includes an Inami-Lim
subtraction term which vanishes because of CKM unitarity: ∑q=u,c,t λq = 0. Equation (1.3) is non-
standard in that we subtract the charm- rather than the up-quark propagator which it ensures that
CP violation comes only from one of the two non-zero terms in that equation.

This subtraction can be performed for each of the internal quark propagators in Fig. 1 and
results in three terms for each, containing the products λtλt , λtλu, and λuλu. Only the first two
products violate CP and only the λtλu has significant long-distance contributions. The u−c propa-
gator difference in this λtλu term realizes GIM cancellation. However, for the t −c difference the t
and c parts are best treated separately. The top-quark part is short-distance dominated and included
in the usual expression in Eq. (1.1). The charm-quark part is the subject of this talk.

s

d

d

s

c− u

c

Figure 2: Diagram representing the long-
distance contribution to ε when the two W
propagators in Fig. 1a are reduced to points
and allowed to separate on distances of the
QCD scale.
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Figure 3: Diagram representing the long-
distance contribution to ε when the two W
propagators in Fig. 1b are reduced to points.

The long-distance limit of the diagram in Fig. 2 can be easily described. The GIM cancellation
leads to a logarithmically divergent loop integral whose divergence is regulated by the W propaga-
tors present in its short distance structure and results in a ln(M2

W/m2
c)≈ 8 term in the corresponding

amplitude. This term is determined by the large momentum part of the integral and is included in
the short-distance result given in Eq. (1.1). In contrast, the long distance contribution, which comes
when the loop momentum is of order mc or smaller, is of order 1.

The diagram shown in Fig. 3 is more complicated. Because of the GIM cancellation in the
internal loop containing the charm and up propagator difference, this factor can be evaluated as

3
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shown. However, the second internal loop involving the charm quark alone will be logarithmically
divergent and require the introduction of gluonic penguin operators to act as counter terms. Finally
the entire graph is also logarithmically divergent, indicating a second ln(M2

W/m2
c) contribution.

2. Second-order weak effective field theory

In either a continuum or lattice calculation, the long distance contribution to ε can be computed
from a four-flavor low energy field theory containing ∆S = 1 and ∆S = 2 four-Fermi operators:

Heff = H∆S=1
eff +C7OLL (2.1)

where the second order ∆S = 2 operator OLL is defined in Eq. (1.2) while H∆S=1
eff is given by:

H∆S=1
eff =

GF√
2

{
∑

q,q′=u,c
V ∗

q′sVqd

2

∑
i=1

CiQ
q′q
i +V ∗

tsVtd

6

∑
i=3

CiQi

}
. (2.2)

Here the four-flavor, current-current operators are defined by:

Qq′q
1 =

(
siq′j

)
V−A

(
q jdi

)
V−A Qq′q

2 =
(
siq′i

)
V−A

(
q jd j

)
V−A (2.3)

with the repeated color indices i, j summed over. The four QCD-penguin operators are given by

Q3 = (sidi)V−A ∑
q=u,d,s,c

(
q jq j

)
V−A Q4 = (sid j)V−A ∑

q=u,d,s,c

(
q jqi

)
V−A (2.4)

Q5 = (sidi)V−A ∑
q=u,d,s,c

(
q jq j

)
V+A Q6 = (sid j)V−A ∑

q=u,d,s,c

(
q jqi

)
V+A . (2.5)

When an effective theory is used at second order, the first-order Hamiltonian must be aug-
mented by new second-order terms whose coefficients are new “low energy constants” (LECs).
These both remove new divergences which appear when loops are computed using the vertices of
the first-order theory and provide information about new physics which is not visible in the first-
order theory. In our case C7 is the single such second-order LEC, conventionally referred to as a
Wilson coefficient. The MS Wilson coefficients Ci, 1 ≤ i ≤ 7 are given in Ref. [2]. In that calcula-
tion the ∆S = 1 coefficients Ci, 1 ≤ i ≤ 6 depend on the MS renormalization scale µ , compensating
for the µ dependence of the renormalized operators Qi, 1 ≤ i ≤ 6. However, the µ dependence of
C7 compensates not only for the µ dependence of the operator Q7 but also for the µ dependence
arising from the dimensionally regularized logarithmic divergence in the diagrams of Fig. 2.

3. Lattice method

We will now describe how the effective second-order theory specified by Eq. (2.1), viewed as
a lattice regulated theory, can be used to calculate ε , including the long-distance contribution. Two
types of |K0⟩− |K0⟩ matrix elements are needed. The most familiar is that of the operator OLL,
used to calculate BK . Much more challenging is the matrix element of the product of two ∆S = 1
operators H∆S=1

eff , combined to give the second order amplitude:

A (T ) =
1
2
⟨K0|

∫ T

0
dt1

∫ T

0
dt2

{
H∆S=1

eff (t1)H∆S=1
eff (t2)

}
|K0⟩. (3.1)
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In Minkowski space this amplitude is equal to the integration time interval T multiplied by the
K0 − K0 mixing matrix M00, whose imaginary part determines ε . As is discussed in Ref. [4],
the matrix element given in Eq. (3.1) can be also be obtained from the Euclidean-space lattice
calculation of a four-point Greens function with initial and final interpolating fields for the K0 and
K0 and the two weak operators H∆S=1

eff (t1) and H∆S=1
eff (t2), integrated over time interval of length

T , far-separated in time from the initial and final K0 and K0 operators. In the Euclidean-space
calculation, intermediate states with energy below MK give unphysical contributions with must be
computed and removed. Finally, potentially important finite volume corrections must be made [5].

The quantities C7⟨K
0|OLL|K0⟩ and A (T ) can then be combined to give ε including both the

short distance part from OLL and the long-distance part from A (T ). However, before this can
be done, we must determine the value for the Wilson coefficient C7, appropriate for our lattice
regularization. This is done by evaluating the complete, second-order Green’s function in which
incoming, external s and d lines are connected to outgoing s and d external lines. Following
a generalized Rome-Southampton procedure, these external lines are evaluated off-shell at large
non-exceptional momenta at a scale µ̃ . The resulting amplitude is similar to that represented in
Fig. 2 except that the simple tree graph with a four-quark vertex from C7OLL must be added.

All of the quantities in this calculation are known except for C7 which both a) absorbs the
unphysical, high-momentum parts of the lattice-regulated loop integral shown in Fig. 2 and b)
provides the short-distance, standard-model physics which contributes to ε . We can find C7 by
comparing the lattice result with the standard model result for this off-shell, gauge-fixed amplitude.
For µ̃ ≫ ΛQCD this off-shell Green’s function can also be reliably computed from perturbation
theory. The comparison of the lattice and perturbative results will then determine C7 [4, 6].

This procedure has been carried out as described in the next section. For this calculation, we
evaluated the Inami-Lim box diagram in Fig. 1a numerically at an external momentum scale 1.4 ≤
µ̃ ≤ 2.6 GeV. While this may be an adequate first step, an important improvement is necessary.
In computing the long-distance part of ε we are extracting a term of order one in the presence of
the larger short-distance part of order ln(M2

W/m2
c). Two-loop, O(αs) corrections to this Inami-Lim

function will then give αs ln(M2
W/m2

c) terms, similar in size to the O(1) quantity we are computing.
We are also neglecting the O(1) leading-log αn

s lnn(M2
W/m2

c) corrections that are typically included
in a perturbative calculation of C7(µ̃). These difficulties can be overcome if, instead of the Inami-
Lim function, we begin with the effective theory given by Eq. (2.1) determined perturbatively to
all orders in αn

s lnn(M2
W/m2

c) [2] and use it to calculate the off-shell Green’s function to determine
C7. This matching calculation is carried out to one loop: the diagram of Fig. 2 is computed without
additional QCD loops while the off-shell C7OLL amplitude includes a one-loop, O(αs) correction.

4. Exploratory lattice calculation

We use an ensemble with N f = 2 + 1 flavors of domain wall fermions, a 243 × 64 lattice
volume, an inverse lattice spacing of 1/a = 1.73 GeV and pion, kaon and charm quark masses:
mπ = 329 MeV, mK = 5.75 MeV and mc = 941 MeV respectively. In this first calculation we
analyze only the diagrams labeled as type 1 and 2 in Ref. [4], omitting “double-penguin” (type 3)
and disconnected (type 4) graphs as well as a fifth type of diagram with a new “single-penguin”
topology. These added contractions have been evaluated but are not included here.
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µ̃ 1.54 1.92 2.11 2.31 2.56

Im
(

Mut
00

)
-5.642(64) -5.601(62) -5.586(61) -5.576(60) -5.511(58)

Table 1: Results for the imaginary part of the physical mixing matrix Mut
00 (in units of 10−15 MeV)

for the λuλt term as a function of the value the matching momentum scale µ̃ (in units of GeV).

The calculation of C7 appropriate to our lattice-regularized effective theory is done in two
steps. First we evaluate the off-shell, Green’s function containing four external quark lines and two
factors of H∆S=1

eff , integrated as in Eq. (3.1) and determine the C7(µ̃)SD-lat needed to reproduce this
result if instead the quantity C7(µ̃)SD-latOLL, integrated over the time interval [0,T ] replaces the
bi-local operator in this off-shell Green’s function. In the second step we use perturbation theory
to determine the coefficient C7(µ̃)SD-PT chosen so that the off-shell Green’s function containing
C7(µ̃)SD-PTOLL and evaluated at the scale µ̃ will reproduce the Inami-Lim function evaluated at
the same external momenta. The combination

(
C7(µ̃)SD−PT −C7(µ̃)SD-lat

)
OLL can then be used in

Eq. (2.1) to define the effective lattice theory that is then evaluated numerically.

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
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C
2
2

chi
2
/d.o.f= 0.30(0.56)

0.0663 + -0.0434log(µ)

Figure 4: The µ̃ dependence of the Q2Q2

contribution to the off-shell Greens function
used in determining CSD-lat

7 .
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Figure 5: Contribution of Q2Q2 to A (T )
with (lower) and without (upper) the short
distance CSD-lat

7 (µ̃ = 1.93 GeV) subtraction.

In Fig. 4 we show the result for the coefficient CSD-lat
7 determined from the contribution of the

bi-local product of the operators Q2Q2 to the off-shell Green’s function as a function of the off-
shell momentum scale µ̃ . The result decreases with increasing µ̃ because the region of integration,
lying between the scales µ̃ and 1/a, decreases as µ̃ increases. Figure 5 shows the results for the
product Q2Q2 with the short distance component, represented by C7(µ̃)SD-latOLL, either included or
removed for the case µ̃ = 1.92 GeV. The contribution to ε is determined by the slope in T , which
is reduced when the unphysical, lattice-regulated divergent part is removed.

Table 1 shows our preliminary results for Im(M00) as a function of the matching scale µ̃ . While
in an ideal calculation the µ̃ dependence should cancel between the lattice subtraction, C7(µ̃)SD-lat,
the perturbative result for C7(µ̃)SD−PT and the scale dependence of OLL, the very small µ̃ depen-
dence seen in Table 1 should probably be viewed as fortuitous.
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5. Conclusions

In Eq. (5.1) we combine our result for the short- and long-distance contributions to the λtλu

part of ε with the larger λtλt part to give the following breakdown:

|ε | = (1.806(41)+0.891(11)+0.209(6)+0.112(13))×10−3 = 3.019(45)×10−3 (5.1)

tt utSD utLD Im(A0),

where the lower line labels the source of each of the terms and only statistical errors are shown. The
short- and long-distance parts of the λtλu contribution correspond to the perturbative and the sub-
tracted lattice contributions using the matching scale µ̃ = 1.92 GeV. The final value in this equation
is 50% larger than the 2.228(11)× 10−3 experimental result because of our omission of the large
logarithmic QCD corrections which arise when the Wilson coefficients at µ̃ ≈ 2 GeV are obtained
from amplitudes at the MW scale. The difference between the 0.209 long-distance non-perturbative
result in Eq. (5.1) and the 0.110 increase that results if the perburbative contribution is evaluated at
µ̃ = 0 instead of 1.92 GeV, suggests ≈ 3% non-perturbative, long-distance contributions to ε .

Past experience in the calculation of the KL −KS mass difference ∆MK and the calculation
presented here show that the long distance contribution to ε is accessible to a first-principles, lattice
QCD calculation. As is the case with ∆MK , we expect that the disconnected diagrams that have
not been included in this exploratory calculation can be computed with current techniques and that
the complete long-distance contribution can be computed with ≈ 10% statistical errors. The most
significant challenge is working at a sequence of sufficiently small lattice spacings that an accurate
continuum limit can be evaluated for these quantities which include a charm quark.

We thank C. Lehner for guidance using his PhySyHCAl framework [7], and Christoph, X. Feng
and our other RBC/UKQCD colleagues for many of the ideas on which this work is based.
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