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The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment
of the muon (g−2)µ come from hadronic contributions. In particular, it can be expected that in
a few years the subleading hadronic light-by-light (HLbL) contribution will dominate the theory
uncertainty. We present a dispersive description of the HLbL tensor, which is based on unitarity,
analyticity, crossing symmetry, and gauge invariance. Such a model-independent approach opens
up an avenue towards a data-driven determination of the HLbL contribution to (g−2)µ .
The dispersive approach defines unambiguously the pion-pole and the pion-box contribution to
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pion-box contribution coincides exactly with the one-loop scalar QED amplitude, multiplied by
the appropriate pion vector form factors.
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1. Introduction

The anomalous magnetic moment of the muon (g−2)µ has been measured [1] and computed
to very high precision, about 0.5 ppm (see e.g. [2]). For more than a decade, a discrepancy has
persisted between the experiment and the Standard Model prediction, now of about 3σ . Forth-
coming experiments at FNAL [3] and J-PARC [4] aim at reducing the experimental error by a
factor of 4.

The main uncertainty of the theory prediction is due to strong interaction effects. At present,
the largest error arises from hadronic vacuum polarisation which, however, is expected to be re-
duced significantly with the help of new data from e+e− experiments [2]. In a few years, the
subleading1 hadronic light-by-light contribution will dominate the theory error. In present calcu-
lations of the HLbL contribution, systematic errors are difficult, if not impossible, to quantify. A
new strategy is required to avoid the model dependence as far as possible, to provide a solid es-
timate of the theory uncertainties and to reduce them. In the recent past, lattice QCD has made
remarkable progress in this direction, and may well become one of the main players in this field in
the near future [7 – 11]. In [12, 13], we have presented the first dispersive description of the HLbL
tensor. By making use of the fundamental principles of unitarity, analyticity, crossing symmetry,
and gauge invariance, we provide a model-independent approach that will allow a more data-driven
determination of the HLbL contribution to (g−2)µ .

A different approach, which aims at a dispersive description of the muon vertex function in-
stead of the HLbL tensor, has been presented in [14]. This latter approach makes a more ambitious
use of dispersion relations, since it tries to represent the HLbL tensor dispersively and also to calcu-
late the two-loop integral over the photon propagators via a dispersive representation. This means
that one needs to solve the dispersion relation for the HLbL tensor (at fixed q2 of the photons)
and at the same time the one describing the dependence on the photon virtualities. In [14] it has
been shown that such an approach reproduces the known result for the pion-pole contribution, but
extending it to the full contribution seems like a formidable task, and it remains to be seen whether
it can be carried out successfully.

Our approach is, in a sense, more modest because we calculate the two-loop integral over
the photon propagators directly: this means that we only need to solve the dispersion relation for
the HLbL tensor at fixed photon virtualities. If enough data on the photon q2-dependence are
available, this is sufficient. Even with this simplification, however, the difficulties to be overcome
are quite nontrivial, as will be briefly illustrated below. Here, we report on the current status of
our project and in particular on a recent improvement of our dispersive approach [15, 16]. We
have constructed a generating set of Lorentz structures that is free of kinematic singularities and
zeros. This simplifies significantly the calculation of the HLbL contribution to (g− 2)µ . Our
dispersive formalism defines both the pion-pole and pion-box topologies in an unambiguous way.
By constructing a Mandelstam representation for the scalar functions, we have been able to prove
that the box topologies are equal to the scalar QED (sQED) contribution multiplied by pion vector
form factors. Which means that at least for this specific contribution the photon q2-dependence is
completely under control.

1Even higher-order hadronic contributions have been considered in [5, 6].
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2. Lorentz structure of the HLbL tensor

In order to study the HLbL contribution to (g− 2)µ , we need a suitable representation of the
HLbL tensor, the hadronic Green’s function of four electromagnetic currents, evaluated in pure
QCD:

Π
µνλσ (q1,q2,q3)

=−i
∫

d4xd4yd4ze−i(q1·x+q2·y+q3·z)〈0|T{ jµ
em(x) jν

em(y) jλ
em(z) jσ

em(0)}|0〉.
(2.1)

Gauge invariance requires the HLbL tensor to satisfy the Ward-Takahashi (WT) identities

{qµ

1 ,q
ν
2 ,q

λ
3 ,q

σ
4 }Πµνλσ (q1,q2,q3) = 0, (2.2)

where q4 = q1 + q2 + q3. The HLbL tensor can be written a priori in terms of 138 basic Lorentz
structures built out of the metric tensor and the four-momenta [17]. Our first task is to write the
HLbL tensor in terms of Lorentz structures that satisfy the WT identities, while requiring at the
same time that the scalar functions that multiply these structures be free of kinematic singulari-
ties and zeros. A recipe for the construction of these structures has been given by Bardeen, Tung
[18], and Tarrach [19] for generic photon amplitudes. Gauge invariance imposes 95 linear relations
between the 138 initial scalar functions. A generating set2 consisting of 43 elements can be con-
structed following Bardeen and Tung [18]. However, as it was shown by Tarrach [19], such a set is
not free of kinematic singularities and has to be supplemented by additional structures. We find a
redundant generating set of dimension 54:

Π
µνλσ (q1,q2,q3) =

54

∑
i=1

T µνλσ

i Πi(s, t,u), (2.3)

where the scalar functions Πi are free of kinematic singularities and zeros. The Mandelstam vari-
ables are defined by s = (q1 + q2)

2, t = (q1 + q3)
2, u = (q2 + q3)

2. There are only seven distinct

2In 4 space-time dimensions, there are two more linear relations, hence a basis consists of 41 elements [20, 21].
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Lorentz structures:

T µνλσ

1 = ε
µναβ

ε
λσγδ q1α q2β q3γ q4δ ,

T µνλσ

4 =
(

qµ

2 qν
1 −q1 ·q2gµν

)(
qλ

4 qσ
3 −q3 ·q4gλσ

)
,

T µνλσ

7 =
(

qµ

2 qν
1 −q1 ·q2gµν

)(
q1 ·q4

(
qλ

1 qσ
3 −q1 ·q3gλσ

)
+qλ

4 qσ
1 q1 ·q3−qλ

1 qσ
1 q3 ·q4

)
,

T µνλσ

19 =
(

qµ

2 qν
1 −q1 ·q2gµν

)(
q2 ·q4

(
qλ

1 qσ
3 −q1 ·q3gλσ

)
+qλ

4 qσ
2 q1 ·q3−qλ

1 qσ
2 q3 ·q4

)
,

T µνλσ

31 =
(

qµ

2 qν
1 −q1 ·q2gµν

)(
qλ

2 q1 ·q3−qλ
1 q2 ·q3

)(
qσ

2 q1 ·q4−qσ
1 q2 ·q4

)
,

T µνλσ

37 =
(

qµ

3 q1 ·q4−qµ

4 q1 ·q3

)(
qν

3 qλ
4 qσ

2 −qν
4 qλ

2 qσ
3 +gλσ

(
qν

4 q2 ·q3−qν
3 q2 ·q4

)
+gνσ

(
qλ

2 q3 ·q4−qλ
4 q2 ·q3

)
+gλν

(
qσ

3 q2 ·q4−qσ
2 q3 ·q4

))
,

(2.4)

T µνλσ

49 = qσ
3

(
q1 ·q3q2 ·q4qµ

4 gλν −q2 ·q3q1 ·q4qν
4 gλ µ +qµ

4 qν
4
(
qλ

1 q2 ·q3−qλ
2 q1 ·q3

)
+q1 ·q4qµ

3 qν
4 qλ

2 −q2 ·q4qµ

4 qν
3 qλ

1 +q1 ·q4q2 ·q4
(
qν

3 gλ µ −qµ

3 gλν
))

−qλ
4

(
q1 ·q4q2 ·q3qµ

3 gνσ −q2 ·q4q1 ·q3qν
3 gµσ +qµ

3 qν
3
(
qσ

1 q2 ·q4−qσ
2 q1 ·q4

)
+q1 ·q3qµ

4 qν
3 qσ

2 −q2 ·q3qµ

3 qν
4 qσ

1 +q1 ·q3q2 ·q3
(
qν

4 gµσ −qµ

4 gνσ
))

+q3 ·q4

((
qλ

1 qµ

4 −q1 ·q4gλ µ
)(

qν
3 qσ

2 −q2 ·q3gνσ
)
−
(
qλ

2 qν
4 −q2 ·q4gλν

)(
qµ

3 qσ
1 −q1 ·q3gµσ

))
.

All the remaining structures are just crossed versions of the above seven structures. As each struc-
ture fulfils the WT identities, both crossing symmetry and gauge invariance are implemented in a
manifest way in the set {T µνλσ

i }. Since the scalar functions Πi are free of kinematic singularities,
they are the well-suited quantities for a dispersive description.

3. HLbL contribution to (((ggg−−−222)))
µµµ

The extraction of the HLbL contribution to aµ = (g−2)µ/2 with the help of Dirac projector
techniques is well-known [22]. With our decomposition of the HLbL tensor in 54 structures, this
amounts to the calculation of the following two-loop integral:

aHLbL
µ =− e6

48mµ

∫ d4q1

(2π)4
d4q2

(2π)4
1

q2
1q2

2(q1 +q2)2

1
(p+q1)2−m2

µ

1
(p−q2)2−m2

µ

×Tr
(
(/p+mµ)[γρ ,γσ ](/p+mµ)γµ(/p+/q1 +mµ)γλ (/p−/q2 +mµ)γν

)
×

54

∑
i=1

(
∂

∂q4ρ

T µνλσ

i (q1,q2,q4−q1−q2)

)∣∣∣∣
q4=0

Πi(q1,q2,−q1−q2).

(3.1)

After a Wick rotation of the momenta, five of the eight momentum integrals can be carried out
with the technique of Gegenbauer polynomials [23]. We have checked that this Wick rotation is
legitimate even in the presence of anomalous thresholds in the scalar functions Πi. In analogy to
the pion-pole contribution [24], a master formula for the full HLbL contribution to (g−2)µ can be
worked out:

aHLbL
µ =

2α3

3π2

∫
∞

0
dQ1

∫
∞

0
dQ2

∫ 1

−1
dτ

√
1− τ2Q3

1Q3
2

12

∑
i=1

Ti(Q1,Q2,τ)Π̄i(Q1,Q2,τ), (3.2)
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Figure 1: Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where α = e2/(4π) and the Ti are integration kernels. Only twelve independent linear combinations
of the hadronic scalar functions Πi contribute, denoted by Π̄i [16]. They have to be evaluated for
the reduced kinematics

s =−Q2
3, t =−Q2

2, u =−Q2
1,

q2
1 =−Q2

1, q2
2 =−Q2

2, q2
3 =−Q2

3 =−Q2
1−2Q1Q2τ−Q2

2, q2
4 = 0.

(3.3)

4. Mandelstam representation

Although the scalar functions in the master formula (3.2) are needed only for the reduced
kinematics (3.3), where the limit q4→ 0 is taken, we define the dispersion relation in the Mandel-
stam variables of the four-point function with general kinematics and evaluate it only afterwards
for the special case q4→ 0. This procedure has the following advantage: the HLbL contribution to
(g− 2)µ splits into contributions from different topologies, each of them linked to a specific sub-
process, which is either data input or again a dispersively reconstructed quantity. These different
contributions are discussed in the following.

Gauge invariance, encoded in the decomposition (2.3), leads to Lorentz structures T µνλσ

i of
mass dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly sup-
pressed at high energies. This allows us to write down unsubtracted double-spectral (Mandelstam)
representations for the Πi [25], i.e. parameter-free dispersion relations. The input to the dispersion
relation are the residues at poles (due to single-particle intermediate states) and the discontinu-
ities along branch cuts (due to two-particle intermediate states). Both are defined by the unitarity
relation, in which the intermediate states are always on-shell. We neglect contributions from inter-
mediate states consisting of more than two particles in the primary cut.

In the Mandelstam representation, the sum over intermediate states in the unitarity relations
(for the primary and secondary cuts) translates into a splitting of the HLbL tensor into several
topologies, shown in fig. 1. The first topology consists of the pion pole, i.e. the terms arising from
a single pion intermediate state. This contribution is well-known [24] and given by

Π̄
π0-pole
1 =−

Fπ0γ∗γ∗
(
−Q2

1,−Q2
2
)
Fπ0γ∗γ∗

(
−Q2

3,0
)

Q2
3 +M2

π

,

Π̄
π0-pole
2 =−

Fπ0γ∗γ∗
(
−Q2

1,−Q2
3
)
Fπ0γ∗γ∗

(
−Q2

2,0
)

Q2
2 +M2

π

,

(4.1)

where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
The other topologies are obtained by selecting two-pion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher

5
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intermediate states in the crossed channel of γ∗γ∗→ ππ , we obtain boxes with multi-particle cuts
instead of poles in the sub-processes.

By explicitly constructing the Mandelstam representation, we have shown that the box topolo-
gies in the sense of unitarity have the same analytic structure as the one-loop sQED contribu-
tion, multiplied with pion electromagnetic form factors FV

π (q2
i ) for each of the off-shell photons

(FsQED). The dispersion relation defines unambiguously this particular q2
i dependence. With the

construction of the Mandelstam representation, we prove that FsQED and box topologies are the
same. Note that the sQED loop contribution in terms of Feynman diagrams consists of boxes, trian-
gles, and bulbs, but that the corresponding unitarity diagrams are just box topologies. This can be
understood as follows: in sQED, the appearance of triangle and bulb diagrams is due to the seagull
vertex, needed to ensure gauge invariance. In our formalism, gauge invariance is already encoded
in the tensor decomposition (2.3). If the sQED contribution is projected on this tensor decomposi-
tion, which separates kinematics from dynamics, one can check that the dynamical singularities of
the scalar functions Πi in sQED are the ones of a box topology.

The equivalence of the pion-box topologies with FsQED allows us to derive compact ex-
pressions for the contribution to the scalar functions Πi in terms of two-dimensional Feynman
parameter integrals. In the limit q4→ 0, they are given by

Π
π-box
i (q2

1,q
2
2,q

2
3) = FV

π (q2
1)F

V
π (q2

2)F
V
π (q2

3)
1

16π2

∫ 1

0
dx
∫ 1−x

0
dy Ii(x,y), (4.2)

where

I1(x,y) =−
2
3
(1−2y)(1−2x−2y)(1−6x(1− x))

∆2
123

,

I4(x,y) =−
2
3
(1−2x)

(
1+2x(1−3x(1−2y)−6y(1− y))

)
∆2

123
,

I7(x,y) =−
4
3
(1−2x)2(1−2y)2y(1− y)

∆3
123

,

I16(x,y) =
4
3

x(1−2x)y(1−2y)
∆213∆13

(
1

∆213
+

1
∆13

)
,

I19(x,y) =−
4
3
(1−2x)2(1−2y)y(1− y)(1−2x−2y)

∆3
213

, (4.3)

I31(x,y) =−
8
3

x2(1− x)(1−2x)3y(1−2y)
∆213∆13

(
1

∆2
213

+
1

∆213∆13
+

1
∆2

13

)
,

I39(x,y) =
4
3
(1−2x)(1−2y)2y(1− y)(1−2x−2y)

∆3
123

,

I42(x,y) =−
4
3

x(1−2x)y(1−2y)(1−6y(1− y))
∆321∆21

(
1

∆321
+

1
∆21

)
,

I50(x,y) = 0,

and

∆i jk = M2
π − xyq2

i − x(1− x− y)q2
j − y(1− x− y)q2

k ,

∆i j = M2
π − x(1− x)q2

i − y(1− y)q2
j .

(4.4)

6
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The remaining functions Πi that enter the master formula can be obtained with crossing relations
permuting only q1, q2, and q3, which are still valid in the limit q4→ 0.

≈

Figure 2: Partial-wave approximation of multi-particle intermediate states in the secondary cut.

We treat the contribution from topologies with higher intermediate states in a partial-wave
picture. This means that the multi-particle cut is approximated by a polynomial, as illustrated in
fig. 2. The dispersive formulation allows us to describe here the effect of two-pion rescattering
in the primary channel. In [12], we already discussed the S-wave contribution. The new Lorentz
decomposition allows us to include also higher partial waves. The contribution of these topologies
is given by dispersion integrals over products of γ∗γ(∗) → ππ helicity partial waves. The Born
terms of the sub-process have to be properly subtracted to avoid double-counting with the box
topologies.

5. Conclusion and outlook

Using the Mandelstam representation for the hadronic scalar functions Πi, we have split aHLbL
µ

into three contributions: pion-pole contributions, box topologies, and ππ-rescattering contribu-
tions:

aHLbL
µ = aπ0-pole

µ +abox
µ +aππ

µ + . . . , (5.1)

where the dots denote neglected higher intermediate states in the primary cut3. The input quan-
tities in this dispersive description are the pion transition form factor Fπ0γ∗γ∗(q2

i ,q
2
j), the pion

electromagnetic form factor FV
π (q2

i ), and the γ∗γ∗ → ππ helicity partial waves. In the absence
of experimental data on the doubly-virtual processes, these quantities will be reconstructed again
dispersively [12, 26 – 33].

We stress that the dispersive formalism defines unambiguously both the pion-pole and pion-
box contribution. They are treated without any approximation. For the two-pion rescattering con-
tribution a partial-wave expansion is employed.

So far we have limited the discussion to pions although the formalism can be extended without
substantial changes to higher pseudoscalar poles (η , η ′) or KK intermediate states [34 – 37].

The dispersive approach presented here provides a first model-independent description of
HLbL scattering and shows a path towards a more data-driven evaluation of the HLbL contribution
to (g− 2)µ . A careful numerical study is currently under way to identify the experimental input
with the largest impact on the theory uncertainty.

3Marc Knecht suggested to give a name to the ellipsis, since at some point it will have to be discussed and estimated.
In the future, it might therefore be convenient to call the ellipsis aresidual

µ or something similar.
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[35] C. Hanhart, A. Kupść, U.-G. Meißner, F. Stollenwerk and A. Wirzba, Eur. Phys. J. C73, 2668 (2013),
[arXiv:1307.5654 [hep-ph]].

[36] B. Kubis and J. Plenter, Eur. Phys. J. C75, 283 (2015), [arXiv:1504.02588 [hep-ph]].

[37] C. W. Xiao et al., (2015), arXiv:1509.02194 [hep-ph].

9

http://arxiv.org/abs/1411.7876
http://arxiv.org/abs/hep-ph/0111058
http://arXiv.org/abs/1203.2501
http://arXiv.org/abs/1206.3098
http://arxiv.org/abs/1309.6877
http://arxiv.org/abs/1410.4691
http://arxiv.org/abs/1006.5373
http://arxiv.org/abs/1106.4147
http://arxiv.org/abs/1305.3143
http://arXiv.org/abs/1210.6793
http://arXiv.org/abs/1108.2419
http://arXiv.org/abs/1307.5654
http://arxiv.org/abs/1504.02588
http://arxiv.org/abs/1509.02194

