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1. Introduction

Muon anomalous magnetic moment is one of the most precisely known physical quantities.

In 2006 the BNL E821 Collaboration published the final results of their measurement of the muon

aµ ≡ (gµ −2)/2 [1]. Various calculations show that the Standard Model (SM) prediction is about

3.5 standard deviations below the experimental value [2, 3]. At the moment two new measurements

of aµ , each aimed at 4-fold increase of accuracy, are planned at Fermilab and J-PARC. If the central

value of the experimental result is confirmed, the deviation between experiment and theory will

reach 8-10 standard deviations unambiguously pointing to effects of New Physics. The theoretical

prediction accuracy is currently limited by the uncertainties of the hadronic vacuum polarization

extracted from the cross sections of e+e− annihilation into hadrons measured by a scan method at

CMD-2 and SND detectors at the VEPP-2M (Fig. 1(left)) and initial-state radiation (ISR) at BaBar

(Fig. 1(right)), see the review of e+e− experiments in Ref. [4].
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Figure 1: Current status of exclusive measurements [4]: (left) CMD-2 and SND, (right) BaBar

It is therefore absolutely necessary to improve the experimental accuracy and experiments on

e+e− annihilation into hadrons are currently in progress in various centers.

2. ISR measurements of e+e− → π+π−

The process e+e− → π+π− is known to give the largest contribution to the leading-order

hadronic term a
LO,had
µ , about 73%. Recent ISR measurements of this process substantially improved

the accuracy of its cross section. The BaBar Collaboration used a data sample collected at the peak

of the ϒ(4S) resonance to achieve the record precision of about 0.5% near the ρ meson peak [5, 6],

see Fig. 2.
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Figure 2: e+e− → π+π−(γ) at BaBar
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KLOE was using ISR running at the φ meson peak and gradually increased the precision of

their measurements to 0.7%, see Fig. 3 [7, 8, 9]. However, the results of KLOE and BaBar differ,

the discrepancy reaching 5% in some energy regions, far beyond the declared precision.
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Figure 3: e+e− → π+π−(γ) at KLOE

A very recent precise measurement has been performed by the BES Collaboration running at

the ψ(3770) peak [10]. Their ISR measurement reaches precision of about 0.9%, see the cross

section in Fig. 4 (left). Although superficially data of different groups are not in real conflict, their
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Figure 4: e+e− → π+π−(γ) at BESIII (left), comparison of BESIII results on aµ (right).

integration reveals local problems illustrated in Fig. 4 (right) in terms of the hadronic contribution

to muon anomaly. Here the yellow band corresponding to the uncertainty of the BESIII result is

consistent within uncertainties with both BaBar and KLOE. The BESIII central value lies between

those of BaBar and KLOE being somewhat closer to the latter. To understand this effect better, we

show in Fig. 5 comparison between the results of BESIII and those from other groups: SND [11]

and CMD-2 [12] (left), BaBar (middle) and KLOE (right). While the scan data from SND and

CMD-2 are not contradicting to the ISR data, local discrepancies mentioned above are obvious

between the data of BaBar, KLOE and BES. Obviously, new measurements with comparable or

even better precision are needed.
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Figure 5: Comparison of results from CMD-2, SND, BaBar and KLOE

3. Experiments at VEPP-2000

Two detectors, CMD-3 and SND, are running at the new low-energy VEPP-2000 e+e− collider

in Novosibirsk [13]. An integrated luminosity of ∼ 60 fb−1 was collected by each in 2011 - 2013 in

the center-of-mass (c.m.) energy range 320 - 2000 MeV. Lately analysis has been mainly focused

on the c.m. energies above the φ meson. In particular, both groups made an attempt to improve the

precision of various cross sections important for the muon anomaly problem [14].

Measurements of an integrated luminosity at CMD-3 use two processes, e+e− → e+e− and

e+e− → γγ , allowing a precision of ∼ 1% [15]. At SND, events of large-angle Bhabha scattering

are used to determine an integrated luminosity with a systematic accuracy of 2% [16].

CMD-3 declares an aggressive goal of reaching 0.35% accuracy in the measurement of the

pion form factor, see their prelimiary results in Fig. 6 [17]. Up to to the c.m. energy of 700 MeV

Figure 6: CMD-3 results on the pion form factor

they can separate pions from muons by two independent methods - from the information from the

drift chamber and from the electromagnetic calorimeters, the latter being used in the whole energy

range.

Both detectors continued analysis of the collected data samples and reported measurements of

cross sections for various processes with pions and η mesons. SND published their final results on

e+e− → π+π−π0 [18], Fig. 7 (left). and e+e− → π+π−η [16], Fig. 7 (right).

CMD-3 and SND studied all three possible charge combinations of the six-pion production,

see the cross sections in Fig. 8. The left plot of Fig. 8 shows the case when all pions are charged

with the obvious dip around the NN̄ threshold [19]. Such behavior of the cross section has been

observed before at BaBar [20] and even in much earlier e+e− and photoproduction measurements

and is probably a threshold effect due to the opening of the NN̄ channel [21]. The behavior of the

cross section for the 2π+2π−2π0 final state (the middle plot in Fig. 8) is also not regular near the
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Figure 7: Recent results on hadronic cross sections from SND: (left) e+e− → π+π−π0 [18], (right) e+e− →

π+π−η [16]
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Figure 8: Cross sections of six-pion annihilation at CMD-3: (left) e+e− → 3π+3π− at CMD-3, (middle)

e+e− → 2π+2π−2π0 at CMD-3, (right) e+e− → π+π−4π0 at SND

NN̄ threshold, but somewhat differs from that in the 3π+3π− case [22]. Finally, SND measured for

the first time ever the cross section of e+e− → π+π−4π0, where the size of the data sample does

not allow any conclusions about the NN̄ threshold, Fig. 8 (right). These final states have interesting

and rich dynamics which analysis should be performed simultaneously for all three final states.

CMD-3 continued studies of various processes with kaons in the final state using good K/π

separation based on measuring dE/dx in the drift chamber. In Fig. 9 we show the cross section

of the process e+e− → K+K− near the φ meson at CMD-3 (left) and in the whole energy range at

SND (right) [23].
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Figure 9: Cross section of e+e− → K+K−: (left) near the φ meson at CMD-3, (right) from 1 to 2 GeV at

SND

They also reported results on the cross section and dynamics of the K+K−π+π−, K+K−η and

K+K−π0 final states.
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SND has already published their measurements of the processes with only neutral particles in

the final state – e+e− → π0π0γ [24] and e+e− → ηγ [25], see Fig. 10.
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Figure 10: Cross section of e+e− → ηγ at SND [25].

A study of the nucleon form factors near threshold was continued. SND significantly improved

the precision of σ(e+e− → nn̄) [26] compared to the previous results from FENICE [27], see

Fig. 11. CMD-3 measured the cross section of the process e+e− → pp̄ and made an attempt to

extract the ratio of the electric and magnetic form factors based on the angular distribution of the

final nucleons [28], see Fig. 12.
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Figure 11: Cross section of the process e+e− → nn̄ at SND [26]

Both detectors used an original method of Ref. [29] to measure the partial width of a strongly

suppressed η ′
→ e+e− decay using the inverse process. CMD-3 reported an upper limit of Γ(η ′

→

e+e−) < 0.0024 eV at 90% CL based on 2.69 pb−1 and one mode of η ′ decay [30]. SND used

2.9 pb−1 and five modes of η ′ decay to improve it to < 0.0020 eV. Finally, they combine the data
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Figure 12: Cross section of the process e+e− → pp̄ at CMD-3 [28].

samples of CMD-3 and SND to find Γ(η ′
→ e+e−) < 0.0011 eV at 90% CL [31] which is still

about two orders of magnitude below the unitary bound. SND has also performed a feasibility

study for a search for η → e+e− via e+e− → η and concluded that the only promising decay mode

for that is η → 3π0. A dedicated two-week run with the luminosity expected at the c.m.energy

around the η meson mass will allow to improve the existing limit [32].

After the upgrade of the VEPP-2000 collider and commissioning the new injection complex

the luminosity of the complex is expected to increase by an order of magnitude. Both detectors

will run for another five years with a goal of collecting 1-2 fb−1 and increasing significantly the

accuracy of all hadronic channels.
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