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1. Introduction

Nuclear theory has been developed extensively since the 1930’s [1]. It started from the liquid
drop model and the empirical mass formula. Then, the nuclear shell model, supported by mean
field theory and Brueckner’s theory, achieved lots of success. Today, variational methods with some
advanced technique can provide us exact solution for light nuclei [2, 3, 4]. Several sophisticated
theories and models have been developed for heavier nuclei over these decades [5, 6, 7, 8, 9, 10].
However, these theoretical studies need to use input data from experiment.

It has been a long time since QCD was established as the fundamental theory of the strong
interaction. In principle, we are able to explain everything from QCD, including hadron spectrum,
hadron structure, binding energy of nuclei, and so on. However, it is difficult to do because of
the non-perturbative nature of QCD. Thanks to the recent advances in lattice QCD, masses of
the ground state hadrons are reproduced well [11, 12], and structure of hadrons are going to be
reproduced [13]. However, explaining properties of nuclei and nuclear matter starting from QCD
still remains one of the most challenging problems in physics.

To study nuclei based on QCD, today’s most popular approaches are ones based on the chiral
Lagrangian. The Lagrangian is constructed using the chiral symmetry of QCD with vanishing
quark mass, and its coefficients (low energy constants) are determined by fitting to experimental
data. In most cases, potentials of two-nucleon (NN) and three-nucleon (NNN) forces are obtained
in a perturbation theory with the particular power counting [14], and then potentials are applied
to the nuclear theories [15]. Sometimes, the Lagrangian is studied directly by solving the Bethe-
Salpeter equation for small nuclei [16]. Recently, the Lagrangian has been studied numerically on
the lattice [17]. These theoretical studies are partly based on QCD but need experimental input.

There are several pioneering attempts to extract scattering observables of two-nucleon system
and binding energy of light nuclei from lattice QCD numerical simulations [18, 19]. However,
it seems that there is a fundamental difficulty in direct extraction of energy shift of multi-baryon
system in lattice QCD. Namely, it is difficult or practically impossible to achieve the ground state
saturation of the corresponding correlation function (plateau crisis). The origin of this difficulty
is the following. In order to study multi-baryon system in lattice QCD, one needs to take spacial
volume of lattice sufficiently large. When spacial volume is large, intervals between energy levels
of discretized continuum become small. Moreover, excitation energy of nucleus is much smaller
than that of hadron in the first place. Therefore, it is very hard to suppress excited state contribution
to the correlation function. This difficulty is so fundamental that we take completely different
approach which does not require the ground state saturation. Our approach consists of two stages.
First, we extract potential of interaction between hadrons in lattice QCD numerical simulation.
Then, we solve the Schrödinger equation involving the potential and obtain physical observables
of the multi-hadron system that we are interested in. We have found that this approach is feasible
and promising.

This paper is organized as follows. In section 2, we explain the method to extract hadron-
hadron interaction in lattice QCD simulation. In section 3, we present our simulation setup and
obtain two-nucleon potentials. In section 4, we apply the potentials to the light nucleus 4He. In
section 5, we apply the potentials to the medium-heavy nuclei 16O and 40Ca. In section 6, we apply
the potentials to the infinite nuclear matters. Section 7 is devoted to summary and discussion.
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2. Nuclear force from QCD

In 2006, Ishii et al. proposed a method to extract nucleon-nucleon (NN) interaction from QCD
on lattice [20]. This method has been applied to many other systems successfully [21], and called
the HAL QCD method, today. This method utilizes the equal-time Nambu-Bethe-Salpeter (NBS)
wave function which is defined for the two-nucleon case by

φ⃗k(⃗r) = ∑⃗
x
⟨0|N (⃗x+ r⃗,0)N (⃗x,0)|NN ,⃗k⟩ (2.1)

where |NN ,⃗k⟩ is a two-nucleon QCD eigenstate in the rest frame with a relative momentum k⃗ and
N (⃗x, t) is the nucleon field operator. With the NBS wave function, a non-local potential U (⃗r,⃗r ′),
can be defined though a Schrödinger type equation as

−∇2

2µ
φ⃗k(⃗r) +

∫
d3⃗r ′U (⃗r,⃗r ′) φ⃗k(⃗r

′) = E⃗k φ⃗k(⃗r) (2.2)

where E⃗k = k⃗2

2µ with the reduced mass µ = MN
2 . Note that the potential U (⃗r,⃗r ′) is defined as

common for all energy eigenstates (for all k⃗) below inelastic threshold.
On the other hand, in lattice QCD numerical simulations, one can measure the 4-point corre-

lation function defined for the two-nucleon case by

Ψ(⃗r, t)≡ ∑⃗
x
⟨0|N (⃗x+ r⃗, t)N (⃗x, t)J (t0)|0⟩ (2.3)

where J (t0) is a source operator which creates two-nucleon states at t0. By inserting the complete
set between N (⃗x, t) and J (t0), one can see that this correlation function contains the NBS wave
function φ⃗k(⃗r) as

Ψ(⃗r, t) = ∑⃗
k

A⃗k φ⃗k(⃗r)e−W⃗k(t−t0) + · · · (2.4)

with the normalization A⃗k = ⟨NN ,⃗k|J (t0)|0⟩ , the total energy W⃗k = 2
√

M2
N + k⃗2 ≃ 2MN + E⃗k ,

and ellipsis denotes inelastic contributions, which can be ignored for reasonably large t − t0.
Because the equation (2.2) is linear in the NBS wave function φ⃗k(⃗r), and the potential U (⃗r,⃗r ′)

is common for all k⃗, one easily obtains an equation[
2MN − ∇2

2µ

]
Ψ(⃗r, t) +

∫
d3⃗r ′U (⃗r,⃗r ′)Ψ(⃗r ′, t) = − ∂

∂ t
Ψ(⃗r, t) (2.5)

which relates Ψ(⃗r, t) and U (⃗r,⃗r ′). One can use this equation to extract interaction potentials from
lattice QCD data. It was shown that this equation makes the extraction very stable and robust. We
show some examples below.

Because available lattice QCD data are limited usually, extracting a non-local potential is not
practical. Therefore, in our actual studies, we apply the velocity (derivative) expansion of the
non-local potential

U (⃗r,⃗r′) = δ 3(⃗r− r⃗′)V (⃗r,∇) = δ 3(⃗r− r⃗′){V0(⃗r) + O(∇)} (2.6)
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Figure 1: Potential of NN interaction in 1S0 partial wave extracted from lattice QCD at pion mass 837 MeV.
Left panel shows ones extracted from data at three different time slices t = 10, 11, and 12. Right panel show
ones measured on three different size of lattice L = 2, 3 and 4 fm.

and truncate higher order derivative terms. When we truncate, the leading order potential V0(⃗r) is
obtained, from the equation (2.5), by

V0(⃗r) =
1

2µ
∇2Ψ(⃗r, t)

Ψ(⃗r, t)
−

∂
∂ t Ψ(⃗r, t)
Ψ(⃗r, t)

− 2MN . (2.7)

This can be rewritten in a more convenient and statistically advantageous form

V0(⃗r) =
1

2µ
∇2R(⃗r, t)

R(⃗r, t)
−

∂
∂ t R(⃗r, t)
R(⃗r, t)

(2.8)

where R(⃗r, t) is defined by R(⃗r, t) = Ψ(⃗r, t)/B(t)2 with the single hadron 2-point function B(t).
It is important to note that the equations (2.5) and (2.7) (or (2.8) ) do NOT require the ground

state saturation for Ψ(⃗r, t), which is usually very difficult or almost impossible to achieve in actual
lattice QCD numerical simulations, in particular on a large spacial volume for two-baryon systems.
In fact, extracted potentials are independent of t−t0 in this method, as long as t−t0 is large enough
so that a single hadron B(t) is saturated by its ground state. Fig. 1 shows potential of NN interaction
in 1S0 partial wave extracted from lattice QCD at pion mass 837 MeV. There, the wall type quark
source J (t0) is placed at origin of time axis, namely t0 = 0. In the left panel, ones extracted
from data of Ψ(⃗r, t) at three different time slices t = 10, 11, and 12 are shown. The data used for
Ψ(⃗r, t) are measured on relatively large volume (L = 4 fm), and hence not saturated by the ground
state at all at around t = 10 to 12, and depend on t essentially. Nevertheless, extracted potentials
are independent on t as we can see explicitly in the figure. This is an example which shows that
the HAL QCD method provides a crucial solution to the plateau crisis in study of muluti-hadron
systems in lattice QCD.

It is also remarkable that the potential is independent on the spacial volume of lattice, as
long as size of lattice is larger than the largest range of interaction between hadrons. Fig. 1, in
the right panel, shows NN potential in 1S0 partial wave extracted from data measured on three
different volume with L = 2, 3, and 4 fm. We can see that extracted potentials agree with each
other, except that L = 2 fm seems a little small. This agreement means that lattice QCD calculation
with one volume is enough in the potential method, and we do NOT need to do infinite-volume
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Table 1: Lattice parameters such as the lattice size, the inverse coupling constant β , the clover coefficient
csw, the lattice spacing a and the physical extension L. See ref. [25] for details.

size β csw a [fm] L [fm]
323 ×32 1.83 1.761 0.121(2) 3.87

Table 2: Quark hopping parameter κuds and corresponding hadron masses, MPS, MV, MB for pseudo-scalar
meson, vector meson and octet baryon, respectively.

κuds MPS [MeV] MV [MeV] MB [MeV] Ncfg /Ntraj

0.13660 1170.9(7) 1510.4(0.9) 2274(2) 420 / 4200
0.13710 1015.2(6) 1360.6(1.1) 2031(2) 360 / 3600
0.13760 836.5(5) 1188.9(0.9) 1749(1) 480 / 4800
0.13800 672.3(6) 1027.6(1.0) 1484(2) 360 / 3600
0.13840 468.6(7) 829.2(1.5) 1161(2) 720 / 3600

extrapolations which consume a lot of time and money. This is a significant advantage of the HAL
QCD method over the conventional one.

Once potentials are obtained, physical observables are obtained by solving the Schrödinger
equation in infinite volume. More physical observables can be obtained in this approach than the
conventional method using energy shift. For example, we can predict scattering phase shift as a
function of energy. Moreover, we can study the properties of nuclei and infinite nuclear matter.
This is another remarkable advantage of the HAL QCD method. Note that a direct lattice QCD
simulation of heavy nuclei must be formidably expensive even with the new algorithm for the
Wick contraction [22, 23, 24].

3. Setup of lattice QCD simulations and resulting two-nucleon potentials

In general, for lattice QCD numerical simulations with dynamical quarks, we need gauge
configuration ensembles generated beforehand. The gauge configuration ensembles at the phys-
ical point generated by the PACS-CS collaboration [11] and the BMW collaboration [12], were
intended to study single hadron properties, and their spacial volume (L ≃ 2 fm) are small even
for two-nucleon system. Therefore, in this study, we use gauge configuration ensembles which
we generated on relatively large spacial volume (L ≃ 4 fm) but with un-physical quark masses.
Employed actions are the renormalization group improved Iwasaki gauge action [26], and the non-
perturbatively O(a) improved Wilson quark action. Our simulation parameters are summarized in
Table 1.

In lattice QCD, mass of quarks are tuned by the so called quark hopping parameters κi. We
choose κu = κd = κs = κuds in our gauge configuration ensembles. In other words, we set strange
quark mass equal to up and down quark mass. This is in order to study the flavor SU(3) symmetric
world. The flavor symmetric world is known to be very useful to capture essential features of
hadron interaction. For example, S-wave interaction between two octet-baryons are reduced to six
independent interactions. This advantage is used in lattice QCD studies [27, 28]. We generated five
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Figure 2: Potentials of NN interaction extracted from lattice QCD at five flavor SU(3) symmetric points.

ensembles with different value of κuds. The values of κuds and measured hadron masses are given
in Table 2. One sees that we can study nucleonic systems in lattice QCD at wide range of nucleon
mass and pion mass with these ensembles.

We measure the nucleon 2-point functions B(t) and nucleon 4-point functions Ψ(⃗r, t). In our
measurement, we use the wall type quark source and the point type nucleon field operator at sink

pα(x) = +εc1,c2,c3 (Cγ5)β1,β2 δβ3,α u(ξ1)d(ξ2)u(ξ3), (3.1)

nα(x) = +εc1,c2,c3 (Cγ5)β1,β2 δβ3,α u(ξ1)d(ξ2)d(ξ3) (3.2)

with ξi = (ci,βi,x). We use Dirichlet boundary conditions in the temporal direction. In order to
reduce noise and enhance signal, we measure the functions 16 times for each configuration by
shifting the source in the temporal direction, and then average over sources. We utilize also an
average over forward and backward propagations in time.

Fig. 2 shows potentials of NN interaction extracted from lattice QCD at the five flavor SU(3)
symmetric points. The vertical bars show statistical error estimated in the Jackknife method. First
of all, one sees that the lattice QCD induced NN potentials share common features with the phe-
nomenological ones (e.g. the Argonne V18 potential given in ref. [29]), namely, a repulsive core
at short distance, an attractive pocket at medium distance, and a strong tensor force. Accordingly,
these lattice QCD NN potentials reproduce well the aspects of NN scattering observables [27].
However, the strength of the lattice QCD nuclear force at the five investigated points is weaker
than the empirical one. In particular, the deuteron, i.e. the bound state in 3S1-3D1 channel, is not
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supported. This failure is due to the heavy up and down quarks in our simulations. In fact, in Fig. 2,
one see that the lattice QCD nuclear force becomes stronger and stronger as the degenerate quark
mass decreases. Therefore, one can expect that, when NN potentials are extracted from lattice QCD
simulation at the physical point, any two-nucleon observables will be reproduced quantitatively.

Fig. 3 shows potentials of NN interaction in the partial wave basis, extracted from lattice QCD
at a quark mass corresponding to MPS = 469 MeV. There, analytic functions fitted to data are
plotted. For example, an analytic function

V (r) = b1e−b2 r2
+b3e−b4 r2

+b5

(
(1− e−b6 r2

)
e−b7 r

r

)2

(3.3)

is used for the central potentials. We use these analytic form of potentials in evaluating their matrix
elements to study physical observables. Fig. 4 shows phase shift of NN scattering in the 1S0 partial
wave obtained with the leading order potential V (r), as a function of the laboratory energy Elab.
The vertical bars contain only statistical error estimated in the Jackknife method. There should be
sizable systematic error in addition to statistical ones, especially at large laboratory energies due
to the truncation of higher order terms in the derivative expansion. Nevertheless, one can realize
from this figure that the lattice QCD NN potentials reproduce the aspects of two-nucleon scattering
observables very well.

4. Helium nucleus from QCD

In this section, we study few-nucleon systems using the lattice QCD induced NN potentials.
We solve the Schrödinger equation given for example for 4He case by

[K +V ] Ψ(⃗x1, x⃗2, x⃗3) = E Ψ(⃗x1, x⃗2, x⃗3) (4.1)

where K (V ) is the kinetic (potential) term of the Hamiltonian, and {⃗x1, x⃗2, x⃗3} are the Jacobi co-
ordinates shown in Fig. 5. In this section, we deal with central potentials to simplify solving the

7
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equation. We take into account the effect of the tensor force partially by means of the effective
central potential.

In general, the central part of two nucleon potential VC(r) can be divided into the Wigner
VW(r), Majorana VM(r), Bartlett VB(r), and Heisenberg VH(r) as

VC(r) =VW(r)+VM(r)Pr +VB(r)Pσ +VH(r)PrPσ (4.2)

where Pr and Pσ are permutation operators in space and spin-space respectively. For even parity
partial waves, this decomposition is reduced to

VC(r) = (VW(r)+VM(r))+(VB(r)+VH(r))Pσ ≡VWM(r)+VBH(r)Pσ . (4.3)

We determine these VWM(r) and VBH(r) by using data of lattice QCD NN potential in 1S0 and 3S1

partial waves. Fig. 6 shows VWM(r) and VBH(r) determined with data at the present lightest quark
mass corresponding to MPS = 469 MeV. There, we have used data of the effective central potential
for 3S1 partial wave, in order to partially take into account the contribution from the tensor force.
We see that VBH(r) is negative and much weaker than VWM(r).

We do not have lattice QCD NN potentials for odd parity partial waves. Therefore, we consider
two cases: the Wigner type force and the Serber type force. In the Wigner type force, we set

VW(r) =VWM(r), VM(r) = 0, VB(r) =VBH(r), VH(r) = 0 (4.4)

so that potential acting on odd parity partial waves is equal to one acting on even parity partial
waves. While, in the Server type force, we set

VW(r) =
VWM(r)

2
, VM(r) =

VWM(r)
2

, VB(r) =
VBH(r)

2
, VH(r) =

VBH(r)
2

(4.5)

so that potential acting on odd parity partial waves is absent. We consider these two extreme cases
and compare results. Since odd parity partial wave is known to be negligible in the S-shell nuclei,
two results will almost coincide, and our approximation for unknown odd parity potential should
be reasonable, for at least three- and four-nucleon systems.
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In order to solve the Schrödinger equation of few-body systems, we use the stochastic vari-
ational method [3] where the correlated Gaussian bases are used to expand the wave function Ψ.
The correlated Gaussian basis, for total angular momentum L = 0, is given by

fA(⃗x1, x⃗2, x⃗3) = exp
[
−1

2
X ·AX t

]
(4.6)

where X = (⃗x1, x⃗2, x⃗3) and A is a symmetric and positive definite 3× 3 matrix. By generating the
matrix A randomly, many functions fA are examined. Then, the most efficient one for the state of
interest is added to the basis set. This is what is called competitive selection. The number of basis
functions gradually increases but remains small, because energies converge rapidly since important
basis functions are selected. This means that we do not need to prepare a huge basis set and do not
need to diagonalize a huge Hamiltonian matrix from the beginning. Therefore, it is easy to solve
the Schrödinger equation of few-body systems in this method.

Fig. 7 shows the lowest energy eigenvalue of four-nucleon system with isospin I = 0 and
(L,S)JP = (0,0)0+ configuration, obtained with the lattice QCD NN potentials at MPS = 469 MeV,
as a function of number of basis functions. One see that energy converges rapidly, and that result
with the Wigner-type force and that with the Serber-type force almost agree as expected so that the
effect of odd parity potential is negligible. This bound state corresponds to the ground state of 4He
nucleus. Namely, we find a stable 4He nucleus in a QCD world with this quark mass. We observe
that the binding energy of 4He at this quark mass is about 5.1 MeV. Note that the three-nucleon
and four-nucleon forces are not considered and may change the binding energy a little. Obtained
binding energy is much smaller than the experimental value of 28.295 MeV. This discrepancy is
primarily due to the unphysical quark mass in our study. Fig. 8 shows correlation function of two-
nucleon in the 4He ground state at this quark mass. We can see effect of the repulsive core at short
distance.

An indication of very shallow four-nucleon bound state is seen for the heaviest quark mass
and the second heaviest quark mass corresponding to pseudo-scalar meson mass MPS = 1171 MeV
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Figure 9: A schematic diagram of single particle (quasi nucleon) levels in nuclei in the mean field picture.
Levels below blue dotted (red dashed) line are occupied completely in 16O (40Ca) nucleus.

and MPS = 1015 MeV, respectively. Since the obtained binding energy is tiny, we do not draw a
conclusion about these signals.

We do not find any four-nucleon bound state for the second lightest and middle quark mass
corresponding to MPS = 672 MeV and MPS = 837 MeV, respectively. And, we do not find any
two-nucleon and three-nucleon bound state for all the five values of quark mass corresponding
to a range of pseudo-scalar meson mass from MPS = 469 MeV to MPS = 1171 MeV. From these
results, we conclude that light nuclei are diffcult to bind at large quark mass. This conclusion is
in contrast to results of lattice QCD studies by other groups, where strongly bound light nuclei
i.e. two-nucleon, three-nucleon, and four-nucleon bound states are reported. Since those groups
use the direct method in which binding energy of multi-nucleon system is directly extracted from
lattice QCD temporal correlation function, we suspect that their results suffer from the plateau
crisis.

5. Medium-heavy nuclei from QCD

In this section, we study medium heavy nuclei starting from QCD in the HAL QCD approach.
Unfortunately, we cannot solve medium heavy nuclei exactly as we did in the previous section.
So, let us begin with the mean field picture of (medium) heavy nuclei. Fig. 9 shows a schematic
diagram of single particle (quasi nucleon) levels in nuclei. For example, levels below the blue
dotted line are occupied completely in 16O nucleus, while ones below the red dashed line are filled
completely in 40Ca nucleus. This single particle picture was proven to be very useful for (medium)
heavy nuclei. In fact, the nuclear shell model has achieved many successes. By the way, 16O and
40Ca are called doubly closed or doubly magic nuclei, since there the major shells (set of levels
with almost degenerate energy), are occupied completely or not occupied at all for both proton and
neutron.

The above independent particle nature of nucleonic system was explained microscopically
based on a two-nucleon interaction in free space, by the Brueckner theory [30]. Consequently, the
Brueckner-Hartree-Fock (BHF) theory became a standard framework to obtain (medium) heavy nu-
clei based on a bare interaction. After that, nuclear theory continued to develop, and today we have
several sophisticated theories for (medium) heavy nuclei beyond the BHF theory. For example,
recent studies show that the coupled-cluster theory [5], the unitary-model-operator approach [6],
and the self-consistent-Green’s function method [7] are powerful for these nuclei and even better
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than the BHF theory. Moreover, ab initio calculations are carried out successfully for nuclei around
12C, in the Green’s function Monte Carlo method [8] and the no-core shell model [9, 10], although
exact application to heavier nuclei seems difficult at this moment.

Since this study is our first attempt to attack medium heavy nuclei starting from QCD, we
employ the traditional BHF theory in this paper. The BHF theory is simple but quantitative enough
to grasp the essential part of physics so that this study is good starting point before making precise
calculations using modern sophisticated theories. Below, we try to obtain properties of 16O nucleus
and 40Ca nucleus in the BHF theory. We choose these two nuclei because they are doubly magic
nucleus, whose ground state is safely assumed as isospin symmetric, spin saturated, and spherically
symmetric, and hence our BHF calculation become easy.

In the BHF theory, G matrix which describes scattering of two quasi nucleons, is a important
ingredient and obtained by solving the integral Bethe-Goldstone equation

G(ω)i j,kl = Vi j,kl +
1
2

>eF

∑
m,n

Vi j,mn G(ω)mn,kl

ω − em − en + iε
(5.1)

where indices i to n stand for a single-particle energy-eigenstates and V is a NN interaction potential
and the intermediate sum runs over excluding occupied states of the nucleus. With this G matrix,
the single-particle potential U is given by

Uab = ∑
c,d

G(ω̃)ac,bd ρdc (5.2)

where indices a,b,c,d correspond to a basis-functions and ρ is the density matrix in this basis,
which is given with the wave function of energy-eigenstate Ψi by

ρab =
occ

∑
i

Ψi
aΨi∗

b (5.3)

where the sum runs over occupied states of the nucleus. However, the energy-eigenstates are ob-
tained as a solution of the Hartree-Fock equation involving the potential U

[K +U ]Ψi = eiΨi (5.4)

where K is the kinetic energy operator of nucleon. Because these equations are highly coupled,
self-consistent G, U , ρ , Ψi and ei are determined by an iteration procedure. Finally, the Hartree-
Fock ground state energy of the nucleus E0 is obtained with the self-consistent U and ρ by

E0 = ∑
a,b

[
Kab +

1
2

Uab

]
ρba −Kcm (5.5)

where Kcm is the kinetic energy corresponding to the spurious center-of-mass motion in the poten-
tial rest frame which is included in K in the first term.

We carry out the above BHF calculation by using the lattice QCD nucleon mass MB and the
lattice QCD induced two-nucleon potentials V (r) shown in the section 3. Due to the limitation for
the lattice QCD NN potentials available at present, we include nuclear force only in 1S0, 3S1 and
3D1 channels. We ignore the Coulomb force between protons for simplicity. For details of the BHF
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Figure 10: Ground state energy of 16O and 40Ca obtained in our BHF calculation with a lattice QCD
nuclear force at a quark mass corresponding to MPS = 469 MeV, as a function of the length parameter b of
the harmonic-oscillator basis-function, at several ndim the number of the basis for each angular momentum.

calculation, we essentially follow refs. [31, 32, 33]. Namely, we use the harmonic-oscillator wave
functions

Rnl(r) =

√
2n!

Γ(n+ l + 3
2)

( r
b

)l
e−

1
2

r2

b2
n

∑
m=0

Cn+l+ 1
2

n−m

(
−r2/b2

)m

m!
(5.6)

for the basis-functions, and solve eq.(5.1) by separating the relative and center-of-mass coordinates
by using the Talmi-Moshinsky coefficient. We use the angle-averaged Pauli exclusion operator Q,
and adopt the so-called Q/(ω −QKQ)Q choice. We begin with the harmonic-oscillator Q, then use
the self-consistent Q in the last few iterations. For ω̃ in eq.(5.2), we use the standard prescription
used in ref. [31]. For the center-of-mass correction in eq.(5.5), we use the estimate Kcm = 3

4 h̄ω
with ω being the a harmonic-oscillator frequency, which reproduces the root-mean-square radius
of the point matter distribution obtained in the BHF calculation [34].

To begin with, we investigate whether the medium-heavy nuclei exist or not, and search for
the optimal harmonic-oscillator basis-functions and number of basis-functions needed to solve the
nuclei. Fig. 10 shows ground state energy E0 of 16O and 40Ca obtained in our BHF calculation at
our lightest quark mass corresponding to MPS = 469 MeV, as a function of the length parameter
b of the harmonic-oscillator basis-functions, for the increasing size of basis ndim for each angular
momentum l. We see that the energy depends on the parameter b and its convergence in ndim is
slow. However, we see also that these energies are definitely sufficiently negative. In addition, the
resulting binding energies are larger than four or ten times the 4He biding energy in the previous
section. Consequently, we conclude that there are stable 16O and 40Ca nuclei at this quark mass.
This is the first-ever finding of medium-heavy nuclei in lattice QCD [35].

On the other hand, we do not obtain any negative E0 for both 16O and 40Ca in our BHF
calculation at the other four values of quark mass. This at least means that there is no tightly-bound
nucleus in QCD at these values of quark mass. Therefore, in the following, we consider only our
lightest quark mass case. Note that nucleon mass is 1161 MeV and pion mass is 469 MeV in this
case. Because increasing ndim more is tough for our computer system, we adopt ndim = 9 in this
paper. We use b = 3.0 fm for both 16O and 40Ca as suggested by the figure.

Table 3 shows single particle levels, total energy, and root-mean-square radius of the ground
state of the two nuclei, obtained at the lightest quark mass. The single particle levels of 40Ca are
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Table 3: Single particle levels, total energy, and mean radius of 16O and 40Ca obtained in BHF calculation
with a lattice QCD nuclear force at a quark mass corresponding to MPS = 469 MeV.

Single particle level [MeV] Total energy [MeV] Radius [fm]
1S 1P 2S 1D E0 E0/A

√
⟨r2⟩

16O −34.1 −13.2 −32.8 −2.05 2.44
40Ca −55.7 −34.3 −13.4 −14.1 −107.9 −2.70 2.89
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Figure 11: Single particle levels in the 40Ca at a
quark mass of MPS = 469 MeV. The positive energy
continuum appears as discrete levels because of the
finite number of basis-functions.
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Figure 12: Point-nucleon density distribution in-
side 16O and 40Ca at a quark mass of MPS = 469
MeV, as a function of distance from the center.

shown in Fig. 11. There, we can see regular shell structure clearly. These levels are already in good
agreement with experimental data which can be found in for example Table 9 of ref. [36]. However,
this agreement might be accidental because we have used the unphysical value of nucleon mass and
several approximations in our BHF calculation.

Obtained total energy of the ground state is −32.8 MeV for 16O and −107.9 MeV for 40Ca,
whose breakdown are given by

16O : E0 = 247.9 − 271.2 − 9.5 = −32.8 [MeV] (5.7)
40Ca : E0 = 772.6 − 871.4 − 9.0 = −107.9 [MeV] (5.8)

where the first and second number are kinetic and potential energy, respectively, and the last number
is the center-of-mass correction Kcm estimated. As usual, total energy is obtained as a result of very
subtle cancellation between kinetic energy and potential energy. Therefore, we should probably
take the above E0 only qualitatively since they are obtained with several approximations. Of course,
obtained E0 are much smaller than the experimental data which is −127.62 MeV for 16O and
−342.05 MeV for 40Ca [37]. Again, this discrepancy is primarily due to the unphysical quark
mass in our study. Recall that we have not used any phenomenological input for nucleon mass and
nucleon interaction, but have used only QCD.

Fig. 12 shows nucleon density distribution inside the nuclei as a function of the distance from
the center. The root-mean-square radii of the distribution are given in Table 3. These are calculated
with a point-nucleon and without making the center-of-mass correction. In the figure, we can
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see a bump and dent at small distance, which are effects of the shell structure. These effects are
observed in experimental charge distribution which can be found in e.g. ref. [38]. Contrary to large
discrepancies of E0 from experimental data, obtained radii are more of less in agreement with
experimental charge radius, 2.73 fm for 16O and 3.48 fm for 40Ca. Probably, this agreement is
due to a cancellation between the weaker attraction in our potential and larger nucleon mass. In
summary, we have seen that the HAL QCD method combined with the many-body theory BHF
produces a reasonable structure of medium-heavy nuclei without using phenomenological input at
all.

6. Nuclear matter equation of state from QCD

In this section, we investigate equation of state (EoS) of nuclear matter starting from QCD
in the HAL QCD approach. Nuclear matter is a uniform matter consists of infinite number of
nucleons. Equation of state is an equation which gives the relation between energy and pressure
of matter. We need to obtain energy of the ground state of interacting infinite nucleon system.
One successful approach is the Brueckner-Bethe-Goldstone (BBG) expansion, where perturbative
expansion is rearranged in terms of the G matrix, and terms are ordered according to number of
independent hole-lines appearing in its diagrammatic representation [30]. The lowest-order two-
hole-line approximation is called the Brueckner-Hartree-Fock (BHF) framework, which is nothing
but the one adopted in the previous section. We adopt the BHF framework in this section again.

In the BHF theory, G matrix describing the scattering of two quasi nucleons is important. It
is depicted diagrammatically by a sum of ladder diagrams representing repeated action of the bare
NN interaction V , and obtained by solving the Bethe-Goldstone equation

⟨k1k2|G(ω)|k3k4⟩= ⟨k1k2|V |k3k4⟩+ ∑
k5,k6

⟨k1k2|V |k5k6⟩Q(k5,k6)⟨k5k6|G(ω)|k3k4⟩
ω − e(k5)− e(k6)

(6.1)

where Q(k,k′) = θ(k−kF)θ(k′−kF) is the Pauli exclusion operator preventing two nucleons from
scattering into the occupied states of matter i.e. the Fermi sea, and kF being the Fermi momentum.
The single particle spectrum, for nucleon mass MN ,

e(k) =
k2

2MN
+U(k) (6.2)

contains a single particle potential U(k), which is crucially important for faster convergence of the
BBG expansion. This potential is determined from Brueckner’s consistency condition

U(k) = ∑
k′≤kF

Re⟨kk′|G(e(k)+ e(k′))|kk′⟩A (6.3)

with |kk′⟩A = |kk′⟩−|k′k⟩. Because these equations are highly coupled, self-consistent G and U are
determined by an iteration procedure. Finally, total energy E0 of the ground state of nuclear matter
at zero temperature, is obtained with the self-consistent G and U by

E0 =
kF

∑
k

k2

2MN
+

1
2

kF

∑
k,k′

Re⟨kk′|G(e(k)+ e(k′))|kk′⟩A (6.4)
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Figure 13: Ground state energy per nucleon E0/A for symmetric nuclear matter in the left panel and pure
neutron matter in the right panel, as a function of the Fermi momentum kF . The empirical saturation point
is also indicated in the left panel. The curves labeled APR are taken from ref. [39]

where spin and isospin indices of the nucleons are included in the label k to simplify the notation.
We carry out the above BHF calculation by using the lattice QCD nucleon mass MB and the

lattice QCD induced two-nucleon potentials V (r) found in section 3. We use the angle averaged Q-
operator and decompose G-matrix in partial waves. Again, we truncate the decomposition keeping
1S0, 3S1, and 3D1 partial waves, because of the limitations of our lattice QCD NN potential. We
use the so called continuous choice of U(k), and the parabolic approximation of it in order to put it
into the Bethe-Goldstone equation (6.1).

Fig. 13, in the left panel, shows the obtained ground state energy per nucleon E0/A for sym-
metric nuclear matter (SNM) as a function of the Fermi momentum kF . These curves are equivalent
to the equation of state, because the pressure of matter at a density is determined by a slope of the
curve at that density. The most important feature of SNM is saturation in which both the binding
energy per nucleon and the nucleon density are constant independent on the number of nucleons A.
The empirical saturation point, suggested from the Weizsäcker mass formula and nuclear binding
energy data, is around kF = 1.36 fm−1 and E0/A = −15.7 MeV, which is indicated in the figure.
In addition, the EoS reported in ref. [39] is shown with label APR for a reference. The APR EoS
is obtained in the Fermi-Hypernetted-chain variational calculation with the physical nucleon mass,
the modern phenomenological NN potential Argonne V18, and a model NNN force adjusted. The
APR EoS is often regarded as phenomenological in the literature.

We can see, in the left panel of Fig. 13, that the SNM EoS obtained from QCD at the light-
est quark mass corresponding to MPS = 469 MeV clearly shows saturation. This is the first-ever
reproduction of the saturation feature from QCD, and a significant success of the HAL QCD ap-
proach [40]. Although the obtained saturation point deviates significantly from the empirical one,
it is again primarily due to the unphysically heavy up and down quark used in our lattice QCD
simulation. Note that we have never used any phenomenological inputs for nucleon interaction,
but used only QCD. Because the lattice QCD NN interactions are weaker than the phenomenolog-
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Figure 14: Mass-radius relation of neutron stars obtained with nuclear matter EoS from lattice QCD nuclear
force in heavy quark region. Crust contribution is not taken into account.

ical ones, the resulting binding energy is smaller than the empirical value. From the quark mass
dependence of the curve shown in the figure, one can expect that a result more compatible to the
phenomenological (APR) one will be obtained when we have extracted NN interactions from QCD
at the physical point. In the figure, we see also that the saturation feature is very sensitive to change
of quark mass so that it is lost even for our second lightest quark mass case. According to our
result, it seems that the saturation feature appears again in the QCD world with very heavy quarks.

Fig. 13, in the right panel, shows the obtained ground state energy per nucleon E0/A for pure
neutron matter (PNM) as a function of kF . The most interesting point in the PNM EoS is the
slope at large kF which determines pressure of PNM at high density. In general, matter is more
stiff when it has higher pressure. The resulting EoS from QCD shows that PNM becomes more
stiff as quark mass decreases. It seems that QCD prediction of PNM EoS is approaching to the
phenomenological (APR) one as quark mass decreases.

Stiffness of PNM is very important to sustain massive neutron stars. Fig. 14 shows the mass-
radius relation of neutron stars obtained with the EoS from lattice QCD nuclear force. In this
calculation, neutron-star matter consists of neutrons, protons, electrons and muons under the charge
neutrality and beta equilibrium. The Tolman-Oppenheimer-Volkoff equation [41, 42] is solved for
spherical non-rotating neutron stars without taking the crust into account. We can see that the
maximum neutron-star mass increases rapidly as quark mass decreases. This is due to the stiffness
of PNM. Obtained maximum mass is much smaller than the mass of already observed neutron
stars. One of the reasons of this incompatibility is the unphysically heavy up and down quark in
our lattice simulations. Hence, it is interesting to see nuclear matter EoS and mass-radius relation
of neutron stars resulting from QCD with the physical quark mass. This is what we are going to do
in the future.

7. Summary and discussion

We have introduced our purpose and strategy in section 1. We want to explain or predict
properties of nuclei and nuclear matter, starting from QCD, the fundamental theory of the strong
interaction. Our strategy consists of two stages, namely we first extract the nuclear force from
the lattice QCD numerical simulation, and then we apply it to advanced few-body methods or
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Figure 15: Ground state energy per nucleon E0/A of several nucleon systems obtained with a lattice QCD
nuclear force at a quark mass corresponding to MPS = 469 MeV, as a function of A−1/3.

established many-body theories. The HAL QCD method enables us to extract potential of nuclear
force from QCD on lattice. In section 2, we have described the method in some detail. In particular,
we discussed its advantages over the conventional method, namely that gives a crucial solution of
the plateau crisis in multi-hadron system in lattice QCD. In section 3, we have carried out lattice
QCD numerical simulations at five unphysical values of quark mass, and obtained two-nucleon
potentials which possess characteristic features of phenomenological ones. In sections 4, 5, and 6,
we have applied the obtained potentials to the light nucleus 4He, the medium-heavy nuclei 16O and
40Ca, and nuclear matter, respectively.

We have found that the nuclei 4He, 16O, and 40Ca exist in lattice QCD at a flavor SU(3)
point with a quark mass corresponding to the pseudo-scalar meson mass of 469 MeV. We have
deduced mass and structure of these nuclei from QCD at that quark mass. We have found the
saturation feature of the symmetric nuclear matter at the same quark mass. These are certainly
significant successes and progress in theoretical nuclear physics, and demonstrates that the HAL
QCD approach to nuclei from QCD is promising.

Fig. 15 puts together the ground state energy per nucleon E0/A of these nucleonic systems at
that quark mass, as a function of A−1/3. For the energy of 16O and 40Ca, a linear extrapolation
to ndim = ∞ with the formula E0(ndim) = E0(∞) + c(A)/ndim, is applied. We can see uniform
A dependence consistent with the Bethe-Weizsäcker mass formula E0(A) = −aV A− aS A2/3 · · ·,
which is known to be good for nucleon system in the real world. Therefore, it seems that we have
obtained natural nuclear system in the HAL QCD approach.

In this study, we have not considered nuclear forces in P, F , and higher partial-waves, in
particular the LS force. We have checked that the odd parity forces do not have a sizable effect for
the 4He nucleus. However, it is known that the LS force is important for the structure of nuclei,
such as the magic number, especially at the region of heavy nuclei A > 40. Recently, we have
developed a method to extract the odd parity nuclear force in lattice QCD simulations [43]. It is
also known that three-nucleon force is necessary for quantitative explanation of mass and structure
of nuclei. Work towards obtaining the three-nucleon force from QCD is also in progress [44].
We will include those forces in our future study on nuclei and nuclear matter from QCD. For the
medium-heavy nuclei, we have used the traditional Brueckner-Hartree-Fock theory. In order to
improve our results quantitatively, we will use modern sophisticated theory in our future study,
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such as the self-consistent Green’s function method [7].
We have not dealt with any hyperon interaction in this paper. Theoretical prediction of hyperon

forces based on QCD are highly desirable since they are difficult to extract by experiment. We can
extract hyperon forces in the HAL QCD method without any fundamental difficulty [21, 27]. It is
natural to consider that hyperons appear at the inner core of a neutron star. Hence, it is interesting
to study hyperon onset based on QCD in the HAL QCD approach.

We have set mass of up and down quark unphysically heavy due to the limitation of compu-
tational resources. A lattice QCD simulation is currently under way on the K-computer at RIKEN
in Japan, to extract baryon-baryon interaction from QCD at the physical point in the HAL QCD
method. Potentials obtained in the study will bring a new connection between QCD and nuclear
physics and astrophysics.
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