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We have recently completed a high-precision extraction of the proton spin-independent polar-
isabilities from the world database of low-energy Compton scattering experiments, within the
framework of chiral effective field theory (χEFT) with pions, nucleons, and the Delta(1232) as
explicit degrees of freedom. Our Baldin-sum-rule-constrained results are, in units of 10−4 fm3,

α
p
E1 = 10.65±0.35(stat)±0.2(Baldin)±0.3(theory),

β
p
M1 = 3.15∓0.35(stat)±0.2(Baldin)∓0.3(theory).

These were obtained in the heavy-baryon formulation, but almost identical results have been
obtained in a covariant calculation.
With the publication this year by Myers et al. of the results of the deuteron Compton scattering
experiment using the Tagged-Photon Facility at the MAX IV Laboratory in Lund, Sweden, the
world database has doubled in size, allowing the extraction of the isoscalar polarisabilities with
unprecedented accuracy, and combined with the proton results we obtain

α
n
E1 = 11.65±1.25(stat)±0.2(Baldin)±0.8(theory),

β
n
M1 = 3.55∓1.25(stat)±0.2(Baldin)∓0.8(theory).

A new generation of experiments with polarised beams have been performed at the Mainz Mi-
crotron, with the first results published this year by Martel et al. These experiments are sensitive
to the spin polarisabilities, and we will discuss the predictions of χEFT for the relevant cross
sections and asymmetries.

The 8th International Workshop on Chiral Dynamics
29 June 2015 - 03 July 2015
Pisa, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:judith.mcgovern@manchester.ac.uk
mailto:hgrie@gwu.edu
mailto:phillips@phy.ohiou.edu


P
o
S
(
C
D
1
5
)
0
2
4

Polarisabilities of the proton and neutron from Compton scattering Judith A. McGovern

1. Introduction

Chiral dynamics in the baryonic sector is typically thought of as the study of the interactions
of pions and nucleons. However the dictates of electromagnetic gauge invariance mean that chiral
symmetry also strongly constrains the interactions of both with photons, and so Compton scattering
from the nucleon is as fundamental a probe of chiral dynamics as pion-nucleon or nucleon-nucleon
scattering. The lowest-order term in the Compton scattering amplitude (the long-wavelength limit)
is the Thomson term which is reproduced by χPT but which, depending as it does only on the
nucleon charge and mass, is independent of chiral dynamics. However, at shorter wavelengths
the probing proton starts to be sensitive to the structure of the target. At NLO in heavy baryon
chiral perturbation theory (HBχPT) the dominant new contribution comes from a single pion loop
with photons coupling to the pion or to the πN vertex (see Fig. 1), and hence a prediction can be
made for these structure effects. This includes, but is not limited to, the numbers known as the
polarisabilities of the nucleon; the latter are the first terms in an expansion in powers of the photon
energy of the lowest (l = 1) scattering multipoles.

The application of chiral dynamics to Compton scattering dates back to the dawn of baryon
χPT, and most famously the lowest-order predictions for the electric and magnetic polarisability
of the proton in HBχPT, α

p
E1 = 12.5× 10−4fm3 and β

p
M1 = 1.2× 10−4fm3 [1] were in very good

agreement with the experimental determinations of the time. Higher-order calculations [2, 3], and
calculations of spin polarisabilities [4, 5, 6, 7, 8] followed. At fourth order the scalar polarisabilities
obtain contributions from low-energy constants, which can only be obtained by fitting Compton
scattering at finite energies. The first studies to systematically compare the full predicted cross
section to a compendium of experimental data for the proton and deuteron were published by
some of the current authors, first without [9, 10, 11] and then with [12] the inclusion of the Delta
resonance as an explicit degree of freedom. These studies obtained an excellent fit to data at
low energies (though without the Delta, a cut on momentum transfer was required), and clearly
demonstrated the pion-production cusp. Both of them in addition found values of β

p
M1 around 3.4×

10−4 fm−3, substantially larger than the accepted values at this time, albeit still with significant
uncertainties.

In recent years there has been an upsurge in interest in the polarisabilities of the nucleon, both
scalar and spin, with a number of new experiments planned, running or completed [13, 14, 15, 16,
17, 18, 19]. In addition the magnetic polarisability β

p
M1 has been shown to be a crucial input in the

determination of the two-photon-exchange contribution to the Lamb shift in muonic hydrogen [20,
21, 22, 23], and the isovector β

p
M1−β n

M1 has been connected to the nucleon electromagnetic mass
difference [25, 24, 26, 27, 28]. The calculation of nucleon polarisabilities is also an aim of lattice
QCD, and several groups now have published results [29, 30, 31, 32, 33, 34, 35, 36, 37, 38], albeit
almost all at large pion masses. In this contribution we report on the results of high-precision
EFT fits of scalar polarisabilities to current data, and on prospects for the determination of spin
polarisabilities. For more details the reader is referred to our review [39], and to the papers detailing
the extractions of the scalar polarisability from the proton [40] and neutron [18]. For related work
see the contributions of H. Grießhammer, E. Downie, J. Annand, G. Feldman, H. Gao and B.
Demissie in these proceedings.

For completeness we reproduce the low-energy non-relativistic effective Hamiltonian that in-
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dicates how polarisabilities affect the response of the nucleon to external electric and magnetic
fields [41]:

Heff =−
1
2

4π

(
αE1~E2 +βM1~H2 + γE1E1~σ ·~E× ~̇E + γM1M1~σ · ~H× ~̇H−2γM1E2Ei jσiH j +2γE1M2Hi jσiE j

)
,

(1.1)

where dots mean a time derivative and Xi j =
1
2(∇iX j +∇ jXi). The scalar polarisabilities will be

given throughout in units of 10−4 fm3, and the spin polarisabilities in units of 10−4 fm4.

2. Chiral EFT and δ power counting

Here we discuss the relevant terms in the Lagrangians for the construction of the Compton
scattering amplitude to fourth order in HBχPT. The full Lagrangian needs to be written in terms of
building blocks with appropriate chiral properties, and hence every term can give rise to interactions
with multiple pions. The usual notation is compact but far from transparent. Below we retain only
the relevant structures for our purposes:

L
(2)

π =1
2 ∂µφ ·∂ µφ + eAµ ε3i j φi∂

µφ j +
1
2 e2AµAµ(φ 2

1 +φ 2
2 )− 1

2 m2
πφ

2 + . . . (2.1)

L
(1)

πN =ψ
†(iv ·D+gAu ·S)ψ (2.2)

L
(2)

πN =ψ
†
{

1
2MN

(
(v ·D)2−D2− ig{S ·D,v ·u}

)
+4c1m2

π

(
1− 1

2 f 2
π

φ
2
)

+

(
c2−

g2
A

8MN

)
(v ·u)2 + c3u ·u− i

4MN
[Sµ ,Sν ]eFµν

(
(1+κ

(s))+(1+κ
(v))τ3

)}
ψ + . . .

(2.3)

L
(4)

πN =2πe2
ψ

†
{

1
2

(
δβ

(s)+δβ
(v)

τ3

)
gµν

−
(
(δα

(s)+δβ
(s))+(δα

(v)+δβ
(v))τ3

)
vµvν

}
FµρFν

ρψ + . . . . (2.4)

where ψ is the nucleon field, φa are the pion fields, Fµν is the electromagnetic field tensor and
Dµ ≡ ∂ µ − ieQAµ is the gauged derivative; vµ = g0µ and Sµ = (0,~σ/2) in the rest frame of the
nucleon. The object uµ is given by

uµ =− 1
fπ

(τa∂µφa + eε
a3b

τaφbAµ + . . .). (2.5)

The ∆(1232) resonance has long been recognised as hugely important in the physics of nucle-
ons. In χPT it is not explicitly present, but its influence is felt through LECs such as c2,3 and δβ

p
M1.

But, as the radius of convergence of an EFT is set by the scale of the lowest degree of freedom
which has not been included, the ∆(1232) can be expected to severely restrict the applicability of
χPT at least in those processes in which it contributes, with the convergence governed by the scale
∆M ≡M∆−MN. And any glance at Compton data above 200 MeV, as in Fig. 3, confirms that this
is such a process. Thus in order to make best use of current data, the inclusion of the Delta as an
explicit degree of freedom is mandatory [42, 43, 44].

The relevant terms in the heavy-baryon Lagrangian are the following:
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L
(1)

∆
=(∆i

ν)
† (−iv ·D+∆)∆

iν (2.6)

L
(1)

πN∆
=− gπN∆

fπ

(ψ†
∂

ν
φ

i
∆

i
ν +(∆i

ν)
†
∂

ν
φ

i
ψ + . . .) (2.7)

L
(2)

γN∆
=
−ieb1

MN

(
ψ

†SρFµρ
∆

3
µ − (∆3

µ)
†SρFµρ

ψ

)
(2.8)

where ∆i
ν is the heavy-baryon reduction of an I = 3

2 , S = 3
2 Rarita-Schwinger field Ψi

ν , with i and µ

the indices on the (iso)spin-1 vector coupled to the (iso)spin- 1
2 spinor. We also show the alternative

form of L
(2+3)

γN∆
used in the δ -expansion, see later (here ψ is the nucleon Dirac spinor and other

notation is that of Ref. [45]):

L cov
γN∆ =

3e
2MN(MN +M∆)

(
ψ̄(igMF̃µν −gEγ5Fµν)∂µΨ

3
ν − Ψ̄

3
ν

←−
∂ µ(igMF̃µν −gEγ5Fµν)ψ

)
. (2.9)

The leading (magnetic) term in the heavy-baryon reduction of this Lagrangian is equivalent to the
one above with the identification gM = b1(1+M∆/MN)/3 (though it is important to note that if the
full vertex is used, there are substantial sub-leading terms) but there is also a sub-leading electric
coupling gE . The ratio of these two couplings (at the ∆(1232) pole) can be obtained from the
E2/M1 ratio to be −0.34 [46, 47]. Being third order, the electric contribution to the amplitudes is
suppressed by a power of ω/MN relative to the magnetic one.

It has been argued that since ∆M is not much more than twice the pion mass, the two should
be counted similarly (the so called “small-scale" or “ε" expansion). However, important as the
∆(1232) is above the photoproduction threshold, its influence on the cross section diminishes
rapidly as the energy is reduced. Arguably, counting ∆M and mπ as the same scale gives undue
prominence to the ∆(1232) in the region where static polarisabilities are important. An alternative
counting was proposed by Pascalutsa and Phillips [45] in which mπ/∆M and ∆M/Λχ are counted as
proportional to the same expansion parameter δ (the so-called “δ -expansion"). In this counting,
for low energies, the ∆-less theory is an expansion in powers of δ 2, and the first contributions from
the ∆ (the pole diagrams and the π∆ loops) intercalate between the third and fourth orders of χPT.
The main advantage of this expansion, however, is that it allows for two separate energy regions,
ω ∼ mπ and ω ∼ ∆M. In the latter regime there is no suppression of πN loop contributions to the
∆ propagator. These must thus be resummed, and the ∆ becomes an unstable particle with a width
Γ, the new propagator going as (p/−M∆ + iΓ(p2)/2)−1. For ω ∼ ∆M, the one-∆ reducible diagram
dominates (that is, the direct ∆-pole diagram), with all other contributions being sub-leading. The
first corrections to the ∆-pole diagram come from pion loops at the γN∆ vertex, which lead to a run-
ning of the effective magnetic and electric couplings, and more importantly give them imaginary
parts above the photoproduction threshold which enable Watson’s theorem to be satisfied. These
were first calculated in Ref. [46] in the context of photoproduction. In what follows we will use the
HB Lagrangian of Eqs (2.1-2.8) for everything except the Delta-pole graph. For that we will use
the covariant form (2.9) with running couplings; this will improve the description of the kinematics
in the resonance region.
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Figure 1: Tree and pion-nucleon loop diagrams that contribute to Compton scattering in the ε · v = 0
gauge, ordered by the typical size of their contributions in the two regimes ω ∼ mπ ∼ δ 2 and ω ∼ ∆M ∼ δ ,
respectively. The leading-order contribution in a particular regime is indicated by (LO). The vertices are
from: L

(1)
πN (no symbol), L (2)

πN (square), L (3)
πN (triangle), L (4)

πN (diamond), L (4)
ππ (disc). Permuted and crossed

diagrams not shown. Figure reproduced from ref. [40]

3. Compton Scattering from the proton

The diagrams used to calculate the Compton scattering amplitudes to N3LO at low energies
and to NLO in the Delta region are given in figures 1 and 2. From these we construct the γp scatter-
ing cross section which depends, effectively, on only three unknowns: the γN∆ magnetic coupling
constant gM, and the 4th-order LECs δα and δβ which contribute to the proton scalar polaris-
abilities (see Eq. (2.4); however instead of quoting these, which in any case are scale-dependent,
we always quote the full values of the polarisabilities.) Our strategy is to iteratively fit gM to data
around the Delta peak, where the cross section is extremely sensitive to it, while fitting α

p
E1 and

5
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Figure 2: ∆(1232) pole and ∆π loop diagrams. Notation as in Fig. 1, also double line: ∆(1232); shaded
blob: πN∆ couplings including vertex corrections. γN∆ vertices from L cov

γN∆
, Eq. (2.9), at O(eδ 2) propor-

tional to gM (square), and at O(eδ 3) proportional to gE (triangle). Permuted and crossed diagrams not shown.
Figure reproduced from ref. [40]

β
p
M1 to the low energy data, taken to be below 170 MeV. In practice we find that both the Delta pole

graph and 4th-order pion-nucleon loops give large contributions to the spin polarisability γM1M1,
leading to a predicted value substantially higher than that suggested from other sources, and to a
poor fit to data. Including γM1M1 as a fit parameter, however, gives a huge improvement in the fit
and a much more natural value of that polarisability. Our results for α

p
E1 and β

p
M1 are compatible

with the Baldin sum rule α
p
E1 +β

p
M1 = 13.8±0.4, so we reduce our statistical errors by imposing

that constraint. The final result is α
p
E1−β

p
M1 = 7.5±0.7(stat)±0.6(theory) hence

α
p
E1 =10.65±0.35(stat)±0.2(Baldin)±0.3(theory),

β
p
M1 =3.15∓0.35(stat)±0.2(Baldin)∓0.3(theory),

(3.1)

with γM1M1 = 2.2± 0.5(stat) and gM = 2.78± 0.02(stat), with a χ2 of 113.2 for 135 d.o.f. Units
throughout are 10−4 fm−3 for scalar polarisabilities, and 10−4 fm−4 for spin polarisabilities.

The theory error was estimated from order-by-order convergence of αE1−βM1, from its LO
value to the NNLO fit given above. (More details on the convergence are given in the contribution
of H. Grießhammer in these proceedings [49].)

The data set from which we obtained this result was first tested for statistical consistency.
Above 200 MeV, it is well known that the LEGS [48] and SAL [50] data are not consistent with
that from Mainz [51], and as the latter is much more copious we chose to use it. At lower energies
we found that the SAL data is entirely compatible with world data up to the cusp but not beyond;
we also discarded a couple of very old data sets, and a couple of individual points. While necessary
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for a good χ2, we checked that none of this had a significant effect on the final extracted values.
See Refs [39, 40] for more details. The predictions of the chiral theory with these fit parameters
are shown together with world data in Fig. 3.

At this point we should note that Compton scattering on the proton has also been investigated
in the covariant, rather than heavy baryon, formulation, working to NNLO, by Lensky and Pasca-
lutsa [53, 54]. A comparison of the predictions of the two formulations was given in Ref. [55]. If
(though it is not strictly mandated at this order) α

p
E1 and β

p
M1 are regarded as fit parameters, the

results are in almost exact agreement with those of Eq. (3.1) [56].

4. Compton Scattering from the deuteron

In the absence of free neutron targets, the best prospects for extracting the neutron polaris-
abilities currently come from Compton scattering from the deuteron. Chiral EFT can be extended
to the two nucleon sector by supplementing the Lagrangian with NN contact interactions, which
encode the short-range, non-chiral physics that binds the deuteron, while pion exchange governs
the long-distance tail of the wave function; after fitting to deuteron and NN scattering data there
are no further free parameters beyond the LECs for the isoscalar polarisabilities. The two-nucleon
Compton scattering kernel can be calculated, as shown in Fig. 4; it has one-body terms which con-
sist of the diagrams of Fig. 1, 2 with a spectator nucleon, and two-body diagrams where the photons
couple to exchanged pions or πN vertices. At chiral energies ω ∼ mπ any graph in which the two
nucleons interact between photon absorption and re-emission are higher order, but at low energies
such graphs are enhanced, and indeed as ω → 0 they are required to ensure the correct Thomson
limit. Since the world deuteron data starts as low as 49 MeV, an improved description of the data is
obtained with the inclusion of rescattering, as demonstrated by Hildebrandt et al. in Ref. [57]. At
the order to which we work, there are no two-body graphs with Deltas.

In Ref. [39] we fitted α
(s)
E1 and β

(s)
M1 to the pre-2014 world deuteron data, then in Ref. [18] the

fit was updated to include the new MAX-lab data which almost doubled the size of the database.
A couple of points should be noted; the one-body diagrams were implemented to NNLO, rather
than N3LO as in the proton case; and for simplicity the heavy-baryon form of the γN∆ Lagrangian
was used. The main consequence of this lower-order fit is a larger theory error than for the proton;
however the statistical error still dominates. The isoscalar Baldin sum rule of α

(s)
E1 +β

(s)
M1 = 14.5±

0.4, [58] was used as a constraint. We obtained α
(s)
E1 −β

(s)
M1 = 7.8±1.2(stat)±0.8(th), with a χ2 of

45.2 for 44 degrees of freedom.
This was then combined with the proton value to extract numbers for the neutron:

α
n
E1 =11.65±1.25(stat)±0.2(Baldin)±0.8(theory),

β
n
M1 =3.55∓1.25(stat)±0.2(Baldin)∓0.8(theory),

(4.1)

The world data and chiral EFT cross sections are shown in Fig. 5.

5. Beyond the cross section

Until now most Compton scattering data by far are unpolarised cross sections; the only excep-
tion at the time of our proton fit was some beam-asymmetry data from LEGS. This is changing with
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Figure 3: World proton Compton scattering data and chiral EFT predictions. The labelled photon laboratory
energy is the central value of 8 MeV bins, and the shaded bands span the same range (variation due to the
errors on the extracted polarisabilities in small in comparison). The symbols are explained in Table 3.1 of
Ref. [39], but notable are purple diamonds for Mainz (mostly Refs [51, 52]), black squares for SAL [50] and
yellow stars for LEGS [48].
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Figure 4: Diagrams that contribute to Compton scattering on the deuteron. The green blob in the one-body
diagram (a) represents the graphs of Fig. 1, 2 while the red blob in (c) represents the full NN rescattering,
including no interaction. The blue hemisphere represents the deuteron wave function. Figure reproduced
from ref. [39]

Figure 5: World deuteron Compton scattering data and the chiral EFT fit. The new data of Ref. [18] are the
red crosses. Figure reproduced from ref. [18]

the new experiments at Mainz, the first of which is already published. We therefore look ahead to
the prospects for confronting new data with the predictions of chiral EFT, and in particular for spin
polarisabilities.

In Table 1 we show the predictions for the spin polarisabilities in two variants of χEFT and
two DR extractions, together with those published by Martel et al. [17]. Within error bars, we can
see that there is a fair agreement between the various approaches, but there is certainly scope for
experiment to pin down the values with greater accuracy.

NNLO HBχPT NLO BχPT MAMI DR(I) DR(II)

γ
p
E1E1 −1.1±1.9 −3.3±0.8 −3.5±1.2 −3.4 −4.3

γ
p
M1M1 2.2±0.5(stat)±0.6 2.9±1.5 3.2±0.9 2.7 2.9

γ
p
E1M2 −0.4±0.6 0.2±0.2 −0.7±1.2 0.3 0

γ
p
M1E2 1.9±0.5 1.1±0.3 2.0±0.3 1.9 2.2

γ
p
0 −2.6±0.5(stat)±1.8 −0.9±1.4 −1.0±0.1±0.1 −1.5 −0.8

γ
p
π 5.5±0.5(stat)±1.8 7.2±1.7 8.0±1.8 7.8 9.4

Table 1: Values of the proton spin polarisabilities from the current calculation [59], from covariant χPT at
NLO [60], from experiment (multipoles: [17]; γ0: [61]; γπ : [62]); and from Dispersion Relations (I) [41],
(II) [63, 12, 64]
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Figure 6: The six real parts of the l = 1 multipoles as predicted by dispersion relations [12, 64] (green
dashed) and by chiral EFT without the Delta (red dashed), with the Delta but without the γN∆ vertex loops
of Fig, 2 (blue dashed) and with the vertex loops (purple solid). The horizontal axis is the centre-of-mass
energy in MeV, and the photoproduction cusp and Delta resonance peaks are marked with vertical lines.

A convenient way of encoding the low-energy Compton scattering amplitudes is via a multi-
pole expansion [65, 12]. From appropriately-weighted angle integrals over the amplitudes, energy-
dependent polarisabilities can be obtained, whose values as ω → 0 are just the usual (static) polar-
isabilities. At low energies the six l = 1 multipoles are dominant, and even up to about 250 MeV,
truncation at l ≤ 2 gives a good approximation to the full cross section [12].

Figure 6 shows the six l = 1 multipoles in chiral EFT. It is noticeable that the full predictions
of chiral EFT (purple solid lines) and those of dispersion relations (green dashed lines) are very
similar in shape at low energies, and their differences can mostly be reconciled though a shift in
the ω = 0 values, that is, the static polarisabilities. It is interesting to see that in all the multipoles
that are dominated by the Delta, the inclusion of γN∆ vertex loops substantially improves the
agreement, which is qualitatively good even at the resonance. It would be very exciting to have
enough cross-section and asymmetry data to extract the same quantities from experiment, but as
yet that does not seem to be a realistic prospect. Still, the broad agreement of the shapes leads one
to hope that fits to low-energy data using only the static polarisabilities as parameters ought to give
rise to reasonably model-independent extractions.

For a spin- 1
2 target, there are three asymmetries which are non-vanishing below the photo-

production threshold [41]. One, Σ3, uses an unpolarised target and incoming photons polarised
parallel or perpendicular to the reaction plane. The other two use a polarised target and right- and
left-handed photons; for Σ2z the target is polarised along the beam, whereas for Σ2x it is perpendic-
ular to the beam but still in the scattering plane. Preliminary low-energy data for Σ3 from Mainz
now exist [66]; χEFT predictions for relevant energies are shown Fig. 7. It can clearly be seen that
sensitivity to structure is present, but that high statistics will be needed to extract polarisabilities
from this asymmetry alone.
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Figure 7: Predictions for the Mainz low-energy Σ3 measurements. In the top panels the curves are Born
(black), a low energy expansion (LEX) with structure entering only through only α

p
E1 and β

p
M1 (blue) and the

full χEFT prediction. In the lower panel three different values of β
p
M1 are shown. α

p
E1 = 10.65 is assumed

throughout.

There is already published data from Mainz on Σ2x and Σ3 at higher energies [17, 67, 68].
These, together with dispersion-relation calculations [69], were used to produce the spin polariz-
ability numbers quoted as “MAMI” in Table 1. In Fig. 8. we show χEFT curves compared to some
of the data. The curves are not a fit, but only an exercise to explore the sensitivity to one of the
spin polarisabilities, which is substantial. However this exercise comes with a significant caveat.
The data is at (lab) energies of approaching 300 MeV. In this region, the χEFT predictions are only
NLO, and many other omitted diagrams would enter at lower orders than the LECs which govern
spin polarisabilities. The γN∆ coupling constants are fit in this region, and hence are determined
only to NLO; a 5% increase of gM (bringing it close to the value assumed in Ref. [47]) will have as
much effect as reducing γ

p
M1M1 by one unit.

6. Future

On the experimental front, publications from Mainz on Σ3 for the proton at low and high
energies are imminent, and Σ2z should follow before too long. Further data taking on all of the
asymmetries is proposed for the next two years. In addition experiments on unpolarised 3He and
on 4He are scheduled for spring 2016, with a view to extracting the neutron scalar polarisabilities
from a new target [70]. χPT calculations (without the Delta) for 3He already exist [71, 72], and
these are being refined (eg by including the Delta) in preparation for the data analysis. More
deuteron data from MAX-lab exists, and its analysis is ongoing [73]. HIγS also has a Compton
program, with data-taking on 4He under way, deuteron runs planned for early 2016 and proton,
both polarised and unpolarised, envisaged in the future [74].
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Figure 8: Published and unpublished data from Mainz (blue squares) and LEGS [48] (yellow stars), com-
pared with prediction of χEFT with γ

p
M1M1 of 1.2 (green) 2.2 (black) and 3.2 (blue). Top: Σ2x, data from

Refs [17] (left) and [67] (right). Bottom: Σ3, Mainz data from Ref. [68].

On the theory side, work is in progress to publish the predictions of both heavy-baryon [49] and
covariant [60] versions of χEFT for proton and neutron spin polarisabilities (static and dynamic)
and proton asymmetries. In Ref. [59, 49] the predictions—and their uncertainties—are extended
to non-physical pion masses and compared with lattice data. And as already mentioned, work is in
progress on an improved treatment of 3He.

By the time of CD2018, we should know considerably more about the polarisabilities of the
proton and neutron.

References

[1] V. Bernard, N. Kaiser, J. Kambor and U. G. Meißner, Nucl. Phys. B 388 (1992) 315.

[2] V. Bernard, N. Kaiser, A. Schmidt and U. G. Meißner, Phys. Lett. B 319 (1993) 269
[arXiv:hep-ph/9309211].

[3] V. Bernard, N. Kaiser, U. G Meißner and A. Schmidt, Z. Phys. A 348 (1994) 317
[arXiv:hep-ph/9311354].

[4] V. Bernard, N. Kaiser and U. G. Meißner, Int. J. Mod. Phys. E 4 (1995) 193 [arXiv:hep-ph/9501384].

[5] X. -D. Ji, C. -W. Kao and J. Osborne, Phys. Rev. D 61 (2000) 074003 [arXiv:hep-ph/9908526].

[6] K. B. Vijaya Kumar, J. A. McGovern and M. C. Birse, arXiv:hep-ph/9909442.

[7] G. C. Gellas, T. R. Hemmert and U. -G. Meißner, Phys. Rev. Lett. 85 (2000) 14
[arXiv:nucl-th/0002027].

12



P
o
S
(
C
D
1
5
)
0
2
4

Polarisabilities of the proton and neutron from Compton scattering Judith A. McGovern

[8] K. B. Vijaya Kumar, J. A. McGovern and M. C. Birse, Phys. Lett. B 479 (2000) 167
[arXiv:hep-ph/0002133].

[9] J. A. McGovern, Phys. Rev. C 63 (2001) 064608 [Erratum-ibid. C 66 (2002) 039902]
[nucl-th/0101057].

[10] S. R. Beane, M. Malheiro, J. A. McGovern, D. R. Phillips, U. van Kolck, Phys. Lett. B567 (2003)
200; Erratum-ibid. B607 (2005) 320. [arXiv:nucl-th/0209002].

[11] S. R. Beane, M. Malheiro, J. A. McGovern, D. R. Phillips and U. van Kolck, Nucl. Phys. A 747
(2005) 311 [arXiv:nucl-th/0403088].

[12] R. P. Hildebrandt, H. W. Grießhammer, T. R. Hemmert and B. Pasquini, Eur. Phys. J. A 20 (2004) 293
[arXiv:nucl-th/0307070].

[13] H. R. Weller, M. W. Ahmed, H. Gao, W. Tornow, Y. K. Wu, M. Gai and R. Miskimen, Prog. Part.
Nucl. Phys. 62 (2009) 257.

[14] HIγS Programme-Advisory Committee Reports 2009 to 2014, with list of approved experiments at
www.tunl.duke.edu/higs/experiments/approved/

[15] E. J. Downie and H. Fonvieille, Eur. Phys. J. ST 198 (2011) 287 [arXiv:1106.0232 [nucl-ex]].

[16] G. M. Huber and C. Collicott, arXiv:1508.07919 [nucl-ex].

[17] P. P. Martel et al. [A2 Collaboration], Phys. Rev. Lett. 114, no. 11, 112501 (2015) [arXiv:1408.1576
[nucl-ex]].

[18] L. S. Myers et al. [COMPTON@MAX-lab Collaboration], Phys. Rev. Lett. 113, no. 26, 262506
(2014) [arXiv:1409.3705 [nucl-ex]].

[19] L. Myers, J. Annand, J. Brudvik, G. Feldman, K. Fissum, H. Grießhammer, K. Hansen and
S. Henshaw [COMPTON@MAX-lab Collaboration], Phys. Rev.C92 025203 (2015)
[arXiv:1503.08094 [nucl-ex]].

[20] K. Pachucki, Phys. Rev. A 60 (1999) 3593.

[21] C. E. Carlson and M. Vanderhaeghen, arXiv:1109.3779 [physics.atom-ph].

[22] R. Pohl, R. Gilman, G. A. Miller and K. Pachucki, Ann. Rev. Nucl. Part. Sci. 63, 175 (2013)
[arXiv:1301.0905 [physics.atom-ph]].

[23] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48 (2012) 120 [arXiv:1206.3030 [hep-ph]].

[24] A. Walker-Loud, C. E. Carlson and G. A. Miller, PoS LATTICE 2012, 136 (2012) [arXiv:1210.7777
[hep-lat]].

[25] A. Walker-Loud, C. E. Carlson and G. A. Miller, Phys. Rev. Lett. 108 (2012) 232301
[arXiv:1203.0254 [nucl-th]].

[26] F. B. Erben, P. E. Shanahan, A. W. Thomas and R. D. Young, Phys. Rev. C 90, no. 6, 065205 (2014)
[arXiv:1408.6628 [nucl-th]].

[27] A. W. Thomas, X. G. Wang and R. D. Young, Phys. Rev. C 91, no. 1, 015209 (2015)
[arXiv:1406.4579 [nucl-th]].

[28] J. Gasser, M. Hoferichter, H. Leutwyler and A. Rusetsky, arXiv:1506.06747 [hep-ph].

[29] E. Chang, W. Detmold, K. Orginos, A. Parreno, M. J. Savage, B. C. Tiburzi and S. R. Beane,
arXiv:1506.05518 [hep-lat].

13

http://www.tunl.duke.edu/higs/experiments/approved/


P
o
S
(
C
D
1
5
)
0
2
4

Polarisabilities of the proton and neutron from Compton scattering Judith A. McGovern

[30] M. Lujan, A. Alexandru, W. Freeman and F. Lee, PoS LATTICE 2014, 153 (2014) [arXiv:1411.0047
[hep-lat]].

[31] W. Detmold, B. C. Tiburzi and A. Walker-Loud, Phys. Rev. D 81, 054502 (2010) [arXiv:1001.1131
[hep-lat]].

[32] T. Primer, W. Kamleh, D. Leinweber and M. Burkardt, Phys. Rev. D 89, no. 3, 034508 (2014)
[arXiv:1307.1509 [hep-lat]].

[33] J. M. M. Hall, D. B. Leinweber and R. D. Young, Phys. Rev. D 89, no. 5, 054511 (2014)
[arXiv:1312.5781 [hep-lat]].

[34] M. Engelhardt, PoS LATTICE 2011, 153 (2011) [arXiv:1111.3686 [hep-lat]].

[35] M. Engelhardt [LHPC Collaboration], Phys. Rev. D 76, 114502 (2007) [arXiv:0706.3919 [hep-lat]].

[36] M. Engelhardt, PoS LAT 2009, 128 (2009) [arXiv:1001.5044 [hep-lat]].

[37] M. Engelhardt, J. Saenz, R. Höllwieser, private communication and forthcoming.

[38] W. Freeman, A. Alexandru, M. Lujan and F. X. Lee, Phys. Rev. D 90, no. 5, 054507 (2014)
[arXiv:1407.2687 [hep-lat]].

[39] H. W. Grießhammer, J. A. McGovern, D. R. Phillips and G. Feldman, Prog. Part. Nucl. Phys. 67
(2012) 841. [arXiv:1203.6834 [nucl-th]].

[40] J. A. McGovern, D. R. Phillips and H. W. Grießhammer, Eur. Phys. J. A 49 (2013) 12
[arXiv:1210.4104 [nucl-th]].

[41] D. Babusci, G. Giordano, A. I. L’vov, G. Matone and A. M. Nathan, Phys. Rev. C 58 (1998) 1013.
[arXiv:hep-ph/9803347].

[42] E. E. Jenkins, A. V. Manohar, In Dobogokoe 1991, Proceedings, Effective field theories of the
standard model 113-137 and Calif. Univ. San Diego - UCSD-PTH 91-30 (91/10,rec.Dec.) 26 p.
(201392) (see Conference Index).

[43] T. R. Hemmert, B. R. Holstein and J. Kambor, Phys. Rev. D 55 (1997) 5598 [arXiv:hep-ph/9612374].

[44] T. R. Hemmert, B. R. Holstein, J. Kambor and G. Knochlein, Phys. Rev. D 57 (1998) 5746
[arXiv:nucl-th/9709063].

[45] V. Pascalutsa, D. R. Phillips, Phys. Rev. C67 (2003) 055202. [nucl-th/0212024].

[46] V. Pascalutsa and M. Vanderhaeghen, Phys. Rev. D 73 (2006) 034003 [arXiv:hep-ph/0512244].

[47] V. Pascalutsa, M. Vanderhaeghen and S. N. Yang, Phys. Rept. 437 (2007) 125
[arXiv:hep-ph/0609004].

[48] G. Blanpied et al., Phys. Rev. C 64 (2001) 025203

[49] H. W. Grießhammer, these proceedings.

[50] E. L. Hallin et al., Phys. Rev. C 48 (1993) 1497.

[51] S. Wolf et al., Eur. Phys. J. A 12 (2001) 231.

[52] V. Olmos de León et al., Eur. Phys. J. A 10 (2001) 207.

[53] V. Lensky and V. Pascalutsa, Pisma Zh. Eksp. Teor. Fiz. 89 (2009) 127 [JETP Lett. 89 (2009) 108]
[arXiv:0803.4115 [nucl-th]].

[54] V. Lensky, V. Pascalutsa, Eur. Phys. J. C65 (2010) 195-209. [arXiv:0907.0451 [hep-ph]].

14



P
o
S
(
C
D
1
5
)
0
2
4

Polarisabilities of the proton and neutron from Compton scattering Judith A. McGovern

[55] V. Lensky, J. A. McGovern, D. R. Phillips and V. Pascalutsa, Phys. Rev. C 86, 048201 (2012)
[arXiv:1208.4559 [nucl-th]].

[56] V. Lensky and J. A. McGovern, Phys. Rev. C 89 (2014) 3, 032202 [arXiv:1401.3320 [nucl-th]].

[57] R. P. Hildebrandt, H. W. Grießhammer and T. R. Hemmert, Eur. Phys. J. A 46 (2010) 111
[arXiv:nucl-th/0512063].

[58] M. I. Levchuk and A. I. L’vov, Nucl. Phys. A 674 (2000) 449. [arXiv:nucl-th/9909066].

[59] H. W. Grießhammer, J. A. McGovern and D. R. Phillips, forthcoming.

[60] V. Lensky, J. McGovern and V. Pascalutsa, arXiv:1510.02794 [hep-ph].

[61] H. Dutz, K. Helbing, J. Krimmer, T. Speckner and G. Zeitler [GDH and A2 Collaborations], Phys.
Rev. Lett. (2003) 91.

[62] M. Camen et al., Phys. Rev. C 65 (2002) 032202.

[63] B. R. Holstein, D. Drechsel, B. Pasquini and M. Vanderhaeghen, Phys. Rev. C 61 (2000) 034316
[arXiv:hep-ph/9910427].

[64] B. Pasquini, private communication based on Ref. [12].

[65] H. W. Grießhammer and T. R. Hemmert, Phys. Rev. C 65 (2002) 045207 [arXiv:nucl-th/0110006].

[66] V. Sokhoyan and E. Downie, private communication, paper in preparation.

[67] P. P. Martel, PhD thesis: U. Mass. Amherst, 2013.

[68] C. Collicott, PhD thesis: Dalhousie, 2015.

[69] D. Drechsel, B. Pasquini and M. Vanderhaeghen, Phys. Rept. 378 (2003) 99 [arXiv:hep-ph/0212124].

[70] J. Annand, these proceedings

[71] D. Choudhury, A. Nogga and D. R. Phillips, Phys. Rev. Lett. 98 (2007) 232303
[arXiv:nucl-th/0701078].

[72] D. Shukla, A. Nogga and D. R. Phillips, Nucl. Phys. A 819 (2009) 98 [arXiv:0812.0138 [nucl-th]].

[73] G. Feldman, these proceedings.

[74] H. Gao, these proceedings.

15


