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1. Introduction

The main motivation for the work described in this talk is to obtain information on high orders

in effective field theories. The work described in this talk is published in [1, 2, 3, 4, 5]. There are

also previous talks containing some of these results, these include [6, 7, 8]

The main use of our formulas is within Chiral Perturbation Theory (ChPT) [9, 10, 11] but we

envisage other applications as well. A review of ChPT at loop level is [12], a somewhat shorter

more recent review is [13]. The present mesonic status is reviewed in the plenary talk by Gerhard

Ecker [14].

In Sect. 2 we give a short introduction to leading logarithms (LLs) in renormalizable field

theories. The underlying principle that allows to calculate LLs also in effective field theories,

is discussed in Sect. 3. The remaining sections are devoted to the different results we obtained.

Section 4 discusses a number of mesonic properties in the massive O(N+1)/O(N) model including

masses, decay constants and meson-meson scattering. The next section includes the anomaly and

shows a number of results for π0 → γ∗γ∗ and the γπππ vertex. Sect. 6 discusses the LL for N-

flavour equal mass ChPT. Sect. 7 discusses the extensions of the arguments needed for baryon

properties and the nucleon mass with results up to seven loops. There are many more results in the

papers, with similar conclusions, not discussed here due to lack of time.

2. Leading logarithms in renormalizable theories

The term leading logarithms (LLs) is used for many different things. In this talk it means the

leading dependence on the subtraction scale µ . For a dimensionless observable F depending on a

single scale M, Quantum field theory (QFT) tells us that the dependence on the subtraction scale is

via L ≡ log(µ/M) in the form

F = F0 +
(

F1
1 L+F1

0

)

+
(

F2
2 L2 +F2

1 L+F2
0

)

+
(

F3
3 L3 + · · ·

)

+ · · · (2.1)

Here Fℓ
m means the Lm contribution at order ℓ in the expansion. The LLs are the terms Fℓ

ℓ Lℓ. In

QFT these terms can be more easily calculated than the remainder. The reason is that an observable

cannot depend on the subtraction scale µ(dF/dµ)≡ 0 and that ultra-violet divergences in QFT are

always local. We rewrite (2.1) for the case of a renormalizable theory with an expansion in α

F = α +
(

f 1
1 α2L+ f 1

0 α2
)

+
(

f 2
2 α3L2 + f 2

1 α3L+ f 2
0 α3

)

+
(

f 3
3 α4L3 + · · ·

)

+ · · · (2.2)

Taking µ(d/dµ) of (2.2), and setting it to zero using the beta-function µ(dα/dµ) = β1α2+β2α3+

· · · , gives

(

β1 + f 1
1

)

α2 +
(

2β1 f 1
1 +2 f 2

2

)

α3L+
(

β2 +2β1 f 1
0 + f 2

1

)

α3 +
(

3β1 f 2
2 +3 f 3

3

)

α4L2 + · · ·= 0 .

(2.3)

The terms with highest power in L at each order in α lead to

f 1
1 = −β1, f 2

2 = β 2
1 , f 3

3 =−β 3
1 , . . . =⇒

F(M) = α
(

1−αβ1L+(αβ1L)2 − (αβ1L)3 + · · ·
)

+ · · ·

=
α(µ)

1+α(µ)β1 log(µ/M)
+ · · ·= α(M)+ · · ·

2
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In the last line we showed first explicitly α = α(µ) and how the LL in this case can be absorbed

into a running coupling constant. The argument can be generalized to sub-leading logarithms and

extended in general to the renormalization group.

An important part in this derivation is that the underlying theory is the same at all orders. α is

the same in all terms. This reasoning is no longer true in effective field theories. In effective field

theory we have a different Lagrangian at each order, with different and new coupling constants.

3. Weinberg’s argument

However, even if the argument used in Sect. 2 no longer holds, some possibilities remain.

Weinberg [9] pointed out that two-loop leading logarithms can be calculated using only one-loop

calculations, the method is later called “Weinberg consistency conditions” and relates divergences

from different types of diagrams. This method was used for ππ-scattering at two loops [15] and

the general mesonic two-loop LL structure [16]. The extension to all orders was done in [17] and

later with a diagrammatic [2] and an operator method [5].

Let us give the argument as presented in [2]. We introduce µ , the subtraction scale, and a

parameter h̄ that keeps track of the order in the expansion. Dimensional regularization is used

throughout with d = 4−w. The bare Lagrangian is expanded

L
bare = ∑

n≥0

h̄nµ−nw
L

(n), L
(n) = ∑

i

c
(n)
i Oi , c

(n)
i = ∑

k=0,n

c
(n)
ki

wk
. (3.1)

The last shows how the coefficients of the Lagrangians are expanded in the divergences. From

QFT it follows that divergences are always local and that only the c
(n)
0i have a direct µ-dependence.

The c
(n)
ki k ≥ 1 only depend on µ through their dependence on the lower order coupling constants

c
(m<n)
0i . The ℓ-loop contribution at order h̄n can be similarly expanded in the divergences coming

from the loop integrations

Ln
ℓ = ∑

k=0,l

1

wk
Ln

kℓ . (3.2)

The remaining parts of the argument basically use that all divergences must cancel including the

non-local ones. At one-loop level we get a contribution

1

w

(

µ−wL1
00({c}1

1)+L1
11

)

+µ−wL1
00({c}1

0)+L1
10 . (3.3)

Expanding µ−w = 1−w log µ + 1
2
w2 log2 µ + · · · to get the log µ dependence we see that this is

− log µ L1
00({c}1

1)≡ log µ L1
11 obtainable by a one-loop calculation and by canceling the 1/w term

we obtain the c1
1i. At two loop-order we get more nontrivial results. The contribution is

1

w2

(

µ−2wL2
00({c}2

2)+µ−wL2
11({c}1

1)+L2
22

)

+
1

w

(

µ−2wL2
00({c}2

1)+µ−wL2
11({c}1

0)

+µ−wL2
10({c}1

1)+L2
21

)

+
(

µ−2wL2
00({c}2

0)+µ−wL2
10({c}1

0)+L2
20

)

. (3.4)

Canceling infinities leads to two equations

L2
00({c}2

2)+L2
11({c}1

1)+L2
22 = 0 , 2L2

00({c}2
2)+L2

11({c}1
1) = 0 . (3.5)
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• h̄1: 0 =⇒ 1

• h̄2: 1 0

1

=⇒ 2

• but also needs h̄1: 0 0

0

=⇒ 1

Figure 1:

The diagrams needed for the LL up to order h̄2 for the mass. Top line, one-loop order; Middle

line: two-loop order; Bottom line: the extra diagrams needed for the divergences of the four meson

vertex at one-loop order. This vertex is needed in the first diagram in the second line. n indicates

a vertex from L (n).

These determine the c2
2i and allow to fix the LL explicit µ-dependence as − 1

2
L2

11({c}1
1) log2 µ . This

was essentially Weinberg’s argument in [9]. This reasoning works to all orders, the full argument

in this form can be found in [2].

We can thus calculate LLs using only one-loop diagrams, but for each new order we need to

take into account the new vertices. The main reason why it is difficult to push this to higher orders

is that we also get more and more complicated diagrams at each order. This is illustrated at two-

loop order in Fig. 1. At higher orders the number of diagrams increases fast. As an example we

show the diagrams needed for the mass to six loops in Fig 2.

So in practice we calculate the divergence and rewrite it in terms of a local Lagrangian. Since

we use dimensional regularization, we know that the results have all the symmetries present in the

result, so we do not need to rewrite the Lagrangians in a nice form. This together with the fact that

we do not need to rewrite the Lagrangian in a minimal form allows to automatize the process fully.

The speed of FORM [18] played a major role in obtaining the results described below. A small

technical comment, we have required all one-particle-irreducible diagrams to be finite, the extra

counter-terms needed for this do not affect physical results.

4. O(N +1)/O(N)

In this section we discuss a few results from the massive O(N) nonlinear sigma model. The

Lagrangian is given by

Lnσ =
F2

2
∂µΦT ∂ µΦ+F2χT Φ . (4.1)

4
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Figure 2: The number of diagrams needed for the LL for the meson mass at to six loops.

with Φ a real N +1 vector transforming as Φ → OΦ under O(N +1) and ΦT Φ = 1. We choose as

vacuum expectation value 〈ΦT 〉= (1 0 . . .0) and the model includes explicit symmetry breaking via

χT =
(

M2 0 . . .0
)

. It has thus both spontaneous and explicit symmetry breaking with a surviving

O(N) global symmetry. N = 3 is two-flavour Chiral Perturbation Theory. The N (pseudo-)Nambu-

Goldstone bosons are described by an N-vector φ .

Calculations of this complexity need to be checked in as many ways as possible. One good

check is to use different parametrizations of Φ in terms of φ . Contributions of different diagrams

can be very different with different parametrizations, while physical quantities should be indepen-

dent of this choice. The work in [1, 2, 3] used up to five different representations. In particular we

used the Gasser-Leutwyler [10], Weinberg [19] and CCWZ [20, 21].

An example of results is the meson mass squared LLs to six loops [2, 3].

M2
phys = M2

(

1+a1LM +a2L2
M + · · ·

)

, LM =
M2

16π2F2
log

µ2

M 2
(4.2)

The usual choice for the physical scale in the logarithm is M = M. The coefficients are shown in

Tab. 1. One question is whether one can guess at an all-order function reproducing these coeffi-

cients. Unfortunately we did not succeed in that. Similar results for the decay constant and vacuum

expectation value can be found in [1, 2, 3].

Using the LLs we can study how fast a series converges when rewritten in terms of different

5
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− 1601 N
144

+ 695 N2

48
− 135 N3

16
+ 231 N4

128

5 − 8821
144

33661
2400

− 1151407 N
43200

+ 197587 N2

4320
− 12709 N3

300
+ 6271 N4

320
− 7 N5

2

6 1922964667
6220800

158393809/3888000−182792131/2592000 N

+1046805817/7776000 N2 −17241967/103680 N3

+70046633/576000 N4 −23775/512 N5 +7293/1024 N6

Table 1: The coefficients ai defined in (4.2) for the physical mass in terms of the lowest order mass.
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Figure 3: The expansion of the mass in terms of the lowest order or physical mass. Left:
M2

phys

M2 = 1+a1LM +

a2L2
M + a3L3

M + · · · with F = 90 MeV, µ = 0.77 GeV. Right:
M2

phys

M2 = 1+ c1Lphys + c2L2
phys + c3L3

phys + · · ·

with Fπ = 92 MeV, µ = 0.77 GeV.

quantities. Examples of choices are

LM =
M2

16π2F2
log

µ2

M2
, L̃M =

M2
phys

16π2F2
log

µ2

M2
phys

, Lphys =
M2

phys

16π2F2
phys

log
µ2

M2
phys

. (4.3)

For masses the expansion in L̃M worked best, but no general obvious best choice was found. How

the choice affects the expansion is shown in Fig. 3 when the mass is expressed in LM or Lphys. That

the best choice is not universal is illustrated by the same graphs but for the decay constant show in

Fig. 4. Here the apparent quality of convergence is the other way round.

As a last example for this case I show the corrections to quantities which are more dominated

by the LLs. The ππ-scattering lengths a0
0 and a2

0 are shown in Fig. 5. A comparison of LL versus

the full two-loop results for these is in [22].

More results can be found in the papers, in particular we also discussed vector and scalar

form-factors.
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Figure 4: The expansion of the decay constant in terms of the lowest order or physical mass. Left:
Fphys

F
=

1+ a1LM + a2L2
M + a3L3

M + · · · with F = 90 MeV, µ = 0.77 GeV. Right:
Fphys

F
= 1+ c1Lphys + c2L2

phys +

c3L3
phys + · · · with Fπ = 92 MeV, µ = 0.77 GeV.
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Figure 5: The expansion of the a0
0 and a2

0 ππ-scattering lengths with the leading logarithms.

In the massless case tadpoles vanish and the proliferation of diagrams does not occur in the-

ories with four- and higher meson vertices only. The reason is that the tadpoles are responsible

for the proliferation. This together with a parametrization of vertices using Legendre polynomials

lead to recursion relations that can be solved to very high orders for form-factors and meson-meson

scattering [23, 24, 25, 26].

For the weak interactions there are also some results, for K → nπ in [27, 28] and KS → γγ and

KS → γ l+l− [29]. They calculated LL to two-loop order for those processes.

5. Anomaly for the case O(4)/O(3) or SU(2)×SU(2)/SU(2)

For anomalous processes we need to add the Wess-Zumino-Witten term to the Lagrangian.

After that we can use the same method for calculating leading logarithms in this sector. More

results and a deeper discussion can be found in [3]. For the decay π0 → γγ we find a well known
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zero [30, 31] for the LL at one-loop level but larger contributions at higher orders. Nevertheless,

the expansion converges extremely well. Relative to lowest order the LL contributions up to six

loops are

A(π0 → γγ)LL

A(π0 → γγ)LO

= 1+0−0.000372+0.000088+0.000036+0.000009+0.0000002+ . . . . (5.1)

Similarly the nonfactorizable part with both photons off-shell is very small and only starts at three-

loop order and in the chiral limit only at four-loops.

As a last anomalous example, the amplitude for the γπ → ππ vertex in terms of the usual

form-factor converges as

F3πLL
0 = (9.8−0.3+0.04+0.02+0.006+0.001+ . . .) GeV−3 (5.2)

We found no places with bad convergence in our work on anomalies [3].

6. SU(N)×SU(N)/SU(N)

The work reported in the previous sections was mainly on the O(N + 1)/O(N) massive non-

linear sigma model. Other symmetry breakings are possible. In particular N-flavour Chiral Pertur-

bation Theory has the symmetry breaking structure of SU(N)× SU(N)→ SU(N). The methods

used above can be readily generalized to this case. In particular, the check with using different

parametrizations exists as well. We used up to four different parametrizations for a unitary matrix

and agreed with known results at two-loop orders for masses, decay constants, vacuum expectation

values [32] and meson-meson scattering [33].

Results for the LL for these quantities up to six loops can be found in [4]. One of the hopes

was to see if we could get a useful leading large N result since this is given by planar diagrams

only. As an example the LL for the mass coefficients are shown in Tab. 2. Again, we did not see an

all-order guess, not even for the leading N coefficients.

7. Nucleon

In the nucleon sector rather little has been done beyond one-loop. Earlier work that we are

aware of are the full order p5 calculation [34, 35] and order p6 [36, 37] of the nucleon mass. In

addition there is the order p5 LL correction to gA, the nucleon axial-vector coupling [38].

We use as the main underlying method the heavy baryon approach, see [39] for an early review

and references. As a check we also use the relativistic formulation [40] with IR regularization [41].

The known problems with the latter regularization do not affect the LLs. The results agreed. Below

we only discuss the heavy baryon method. The results of this section can be found in more detail

in [5].

The lowest order Lagrangian is of order p

L
(0)

Nπ = N̄
(

ivµ Dµ +gASµuµ

)

N . (7.1)
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i ai for N = 2 ai for N = 3 ai for general N

1 −1/2 −1/3 −N−1

2 17/8 27/8 9/2N−2 −1/2+3/8N2

3 −103/24 −3799/648 −89/3N−3 +19/3N−1 −37/24N −1/12N3

4 24367/1152 146657/2592 2015/8N−4 −773/12N−2 +193/18+121/288N2

+41/72N4

5 −8821/144 − 27470059
186624

−38684/15N−5 +6633/10N−3 −59303/1080N−1

−5077/1440N −11327/4320N3 −8743/34560N5

6∗ 1922964667
6220800

12902773163
9331200

7329919/240N−6 −1652293/240N−4

−4910303/15552N−2 +205365409/972000

−69368761/7776000N2 +14222209/2592000N4

+3778133/3110400N6

Table 2: The coefficients of the expansion of the physical mass in terms of LM for the SU(N)×

SU(N)/SU(N) case. Definitions as in (4.2).

Figure 6: Example of diagrams with different RGO but the same p-order. The thick line is the nucleon, the

number in the box indicate p-order of the vertex. Both diagrams are order p5. The left diagram has RGO 1,

the right RGO 2.

As for the meson sector we need checks on our calculation. We can use different parametrizations

of the meson field as before but in addition there are two different choices of the p2 action. The

standard BKM [39, 42] and the EM [43] version respectively:

L
(1)BKM

πN =N̄v

[(v ·D)2 −D ·D− igA{S ·D,v ·u}

2M
+ c1tr(χ+)+

(

c2 −
g2

A

8M

)

(v ·u)2 + c3u ·u

+

(

c4 +
1

4M

)

iε µνρσuµuν vρ Sσ

]

Nv

L
(1)EM

Nπ =
1

M
N̄
[

−
1

2

(

DµDµ + igA{Sµ Dµ ,vν uν}
)

+A1tr
(

uµuµ
)

+A2tr
(

(vµuµ)2
)

+A3tr (χ+)

+A5iε µνρσ vµSν uρuσ

]

N . (7.2)

The propagator is order p but loops still add p2 in the chiral counting just as for mesons. As

a consequence p-counting and loop counting no longer coincide. We solve this by introducing

h̄2 ∼ pn+1 for nucleons and h̄n ∼ pn+2 for mesons and introduce the concept of renormalization

group order (RGO) [5]. This is approximately the same as the maximum power of 1/w or 1/(d−4),

including the parts from the counter-terms, that can show up in a given diagram. Diagrams at the

same p-order can differ in RGO, an example is shown in Fig. 6. Note that a look at the equations
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k2 −4c1M

k3 − 3
2
g2

A

k4
3
4

(

g2
A +(c2 +4c3 −4c1)M

)

−3c1M

k5
3g2

A

8

(

3−16g2
A

)

k6 − 3
4

(

g2
A +(c2 +4c3 −4c1)M

)

+ 3
2
c1M

k7 g2
A

(

−18g4
A +

35g2
A

4
− 443

64

)

k8
27
8

(

g2
A +(c2 +4c3 −4c1)M

)

− 9
2
c1M

k9
g2

A

3

(

−116g6
A +

2537g4
A

20
−

3569g2
A

24
+ 55609

1280

)

k10 − 257
32

(

g2
A +(c2 +4c3 −4c1)M

)

+ 257
32

c1M

k11
g2

A

2

(

−95g8
A +

5187407g6
A

20160
−

449039g4
A

945
+

16733923g2
A

60480
− 298785521

1935360

)

Table 3: The fully calculated coefficients in the LL and odd-power sub-leading log coefficients for the

nucleon mass. The coefficients are defined in (7.3).

shows that it is possible to calculate the sub-leading logarithm if there is no contribution from tree-

level diagrams at a given order. For nucleon observables where fractional powers of the quark mass

can show up this will be the case. The example of the nucleon mass at odd p-orders shows this.

We use here M for the lowest order nucleon mass and m for the lowest order pion mass.

Expanding in the lowest-order logarithm L = m2

(4πF)2 log
µ2

m2 we define

Mphys =M+ k2
m2

M
+ k3

πm3

(4πF)2
+ k4

m4

(4πF)2M
ln

µ2

m2
+ k5

πm5

(4πF)4
ln

µ2

m2
+ · · ·

=M+
m2

M

∞

∑
n=1

k2nLn−1 +πm
m2

(4πF)2

∞

∑
n=1

k2n+1Ln−1, (7.3)

The coefficients up to k6 were known from the earlier work. We have fully calculated the coeffi-

cients up to k11, these are shown in Tab. 3.

The Lagrangian is invariant under gA ↔−gA and flipping the sign of the meson field. So only

even powers of gA can show up. This is clearly visible in Tab. 3. The k2n have an even more peculiar

structure. That only one power of the p2-Lagrangian coefficients can show up is a consequence of

the RGO counting but why only maximum g2
A shows up is not clear to us. If we assume that

no higher powers of gA show up we can calculate k12 as well. Doing that and rewriting now the

logarithms in terms of the physical pion mass leads to the simpler coefficients ri shown in Tab. 4.

Taking a look at these coefficients we conjecture

M = Mphys +
3

4
m4

phys

log
µ2

m2
phys

(4πF)2

(

g2
A

Mphys

−4c1 + c2 +4c3

)

−
3c1

(4πF)2

µ2
∫

m2
phys

m4
phys(µ

′)
dµ ′2

µ ′2
. (7.4)

We can now use the known result for the pion mass discussed before and the conjecture (7.4) to

obtain k14 and k16. Using this we have calculated the LL and the odd-power sub-leading logarithms

fully to five loops and have a conjecture for the LL at 6 and 7 loops for the nucleon mass.

Numerical results for a standard set of input parameters are shown in Fig.7. The convergence
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r2 −4c1M

r3 − 3
2
g2

A

r4
3
4

(

g2
A +(c2 +4c3 −4c1)M

)

−5c1M

r5 −6g2
A

r6 5c1M

r7
g2

A

4

(

−8+5g2
A −72g4

A

)

r8
25
3

c1M

r9
g2

A

3

(

−116g6
A +

647g4
A

20
−

457g2
A

12
+ 17

40

)

r10
725
36

c1M

r11
g2

A

2

(

95g8
A −

1679567g6
A

20160
+

451799g4
A

3780
−

320557g2
A

15120
+ 896467

60480

)

r12
175
4

c1M

Table 4: The calculated coefficients in the LL and odd-power sub-leading log coefficients for the nucleon

mass in terms of the physical pion mass.. The coefficients are defined similar to (7.3).
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Figure 7: The corrections to the nucleon mass at a given loop-order from the LL and the odd-power sub-

leading logarithm. The input parameters used are M = 938 MeV,c1 =−0.87 GeV−1,c2 = 3.34 GeV−1,c3 =

−5.25 GeV−1,gA = 1.25,µ = 0.77 GeV and F = 92.4 MeV.

at the physical pion mass is very good. In Fig. 8 we show the contribution of all the terms we have

obtained.

8. Conclusions

We discussed in this talk our recent work on leading logarithms in massive effective field

theories. There is a rather large number of results available in the meson sector [1, 2, 3, 4]. We

encourage people to have a look at the (very) many tables in those references. We welcome any

all-order conjectures.

11



P
o
S
(
C
D
1
5
)
0
2
9

Leading logarithms for mesons and nucleons Johan Bijnens

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2  4  6  8  10  12  14  16

M
ph

ys
-M

 [G
eV

]

n

 

 
  

 
 

  

  

 
 

 

Figure 8: The individual contribution from the rn term up n = 16 to the nucleon mass at the physical pion

mass.

The nucleon mass we obtained as the first result using this method in the baryon sector [5].

Work is in progress for other quantities. We had a simple conjecture for the LL at all orders in

terms of the pion mass LL but could not find a proof.
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