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1. Introduction

Rare kaon decays have attracted increasing interest during the past few decades. As flavor
changing neutral current processes, these decays are highly suppressed in the standard model (SM)
and thus provide ideal probes for the observation of new physics effects. The K → πνν̄ decay is
particularly interesting because it is known to be short-distance (SD) dominated and theoretically
clean. The required hadronic matrix elements can be obtained from leading order semi-leptonic K
decays, such as K+→ π0e+ν , via isospin rotation. The remaining long-distance (LD) contributions
below the charm scale are safely neglected in KL→ π0νν̄ and are expected to be small in K+→
π+νν̄ . Though small, by including the LD contribution estimated by a phenomenological analysis,
which involves chiral perturbation theory and the operator production expansion, the branching
ratio Br(K+→ π+νν̄) is enhanced by 6% [1], which is comparable to the 8-10% total SM error [2].

The current known measurement of the branching ratio [3] is a combined result based on the
7 events collected by BNL E787 [4, 5, 6, 7] and its successor E949 [8, 3]. Its central value is
almost twice of the SM prediction, but with a 60-70% uncertainty it is still consistent with SM.
The new experiment, NA62 at CERN [9, 10], aims at an observation of O(100) events and a 10%-
precision measurement of Br(K+ → π+νν̄) in two years. Another new experiment, KOTO at
J-PARC [11, 12], is designed to search for CP-violating KL → π0νν̄ decay, and may have good
chance to find the events. Considering the fact that the SM predictions will be confronted with
the new experiment soon, a lattice QCD calculation of the LD contribution to K+ → π+νν̄ is
important.

It has been proposed to calculate the LD contributions to K → πνν̄ using lattice QCD in
Ref. [13]. The method to treat with a second-order electroweak amplitude on the lattice has been
developed by Refs. [14, 15] and applied to the lattice calculation of the LD contributions to KL-
KS mass difference [16, 17], the indirect CP violation parameter εK [18] and the rare kaon decay
K → π`+`− [19, 20, 21]. Adopting the useful techniques provided by the previous studies, we
have developed a lattice method to calculate the decay amplitude for K → πνν̄ . In this work we
will report a lattice QCD study on rare kaon decay K+ → π+νν̄ at a heavier-than-physical pion
mass mπ = 420 MeV. Our exploratory study involves the calculation of both W -W and Z-exchange
diagrams.

2. Contributions from intermediate quark loops

In the SM the K → πνν̄ decays proceed through W -W and Z-exchange diagrams, which
contain three intermediate up-type quark loops. A rough estimate reflecting the quadratic GIM
mechanism gives a comparison among the top, charm and up quark contribution to the decay am-
plitude [22]

λtxt : λcxc lnxc : λu
Λ2

QCD

M2
W

, (2.1)

where xq = m2
q/M2

W for q = u,c, t. The relevant CKM factors are defined as λq = V ∗qsVqd . In
Eq. (2.1) the largest contribution to the decay amplitude (∼ 68%) comes from the top quark loop.
The charm quark contribution is suppressed by a factor of xc lnxc/xt but compensated with another
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factor λc/λt from the CKM matrix element. So it still accounts for∼ 29% of the total contribution.
The remaining up quark contribution is estimated to be ∼ 3%.

Among the three up-type quarks, the top quark contribution is a SD contribution while the
up quark contribution is a LD contribution. The charm quark contribution carries a logarithmic
factor lnxc as shown in Eq. (2.1). This logarithmic structure suggests that the contribution comes
from a high energy scale ∼MW down to an energy scale of the charm quark mass ∼ mc and thus
is SD dominated. The SD part of the charm quark contribution can be calculated precisely using
perturbation theory [23, 24]. Our concern here is how to calculate the LD part of the charm quark
contribution, as well as the up quark contribution, with controlled error.

3. Bilocal operators

Instead of integrating out the charm quark field, our calculation is performed in the four-
flavor theory. This allows us to explore the bilocal structure for up and charm quark contributions
directly. We can begin with the first-order effective field theory, where the W and Z bosons have
been integrated out. In the W -W diagrams the W -boson exchanges have been replaced by two
effective operators

O∆S=1
q` = CMS

∆S=1(µ) [(s̄q)V−A (ν̄`)V−A]
MS (µ),

O∆S=0
q` = CMS

∆S=0(µ)
[
( ¯̀ν)V−A (q̄d)V−A

]MS
(µ). (3.1)

The Wilson coefficients CMS
∆S=1(µ) and CMS

∆S=0(µ) are calculated in the MS scheme and account for
the contributions from the SD physics. Since the hadronic part of O∆S=1

q` and O∆S=0
q` is given by a

V −A current, CMS
∆S=1(µ) = CMS

∆S=0(µ) = 1. The operators (s̄q)V−A (ν̄`)V−A and ( ¯̀ν)V−A (q̄d)V−A

have been renormalized in the MS scheme at the scale µ . Given a MS operator OMS(µ), it can
be related to the bare lattice operator Olat(a) through the relation OMS(µ) = Zlat→MS

O (µ,a)Olat(a),
where Zlat→MS

O (µ,a) is a conversion factor and a is the lattice spacing.
In the Z-exchange diagrams the W -boson exchange has been described by a OW

q four-quark
operator

OW
q =CMS

1 (µ)QMS
1,q (µ)+CMS

2 (µ)QMS
2,q (µ), (3.2)

where QMS
i,q (µ) (i= 1,2) are conventional current-current operators renormalized in the MS scheme.

They can be related to the bare lattice operators through

QMS
i,q (µ) = ∑

j
Zlat→MS

i, j (µ)Qlat
j,q, j = 1,2

Qlat
1,q = (s̄aqb)V−A (q̄bda)V−A, Qlat

2,q = (s̄aqa)V−A (q̄bdb)V−A (3.3)

where a,b are color indices. The Z-boson exchange has been replaced by a two-quark/two-neutrino
operator OZ

`

OZ
` =CMS

Z (µ)
[
JZ

µ ν̄`γ
µ(1− γ5)ν`

]MS
(µ) (3.4)
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where the neutral current JZ
µ is given by JZ

µ = ∑q=u,c,d,s T q
3 q̄γµ(1− γ5)q−2Qem,q sin2

θW q̄γµq. The
weak isospin factor T q

3 takes the values +1/2, +1/2, −1/2, −1/2 for q = u,c,d,s and the elec-
tromagnetic charge Qem,q is given by 2/3 for up-type quarks and −1/3 for down-type quarks. As
described above, we have CMS

Z (µ) = 1.
Given the effective operators, which represent the first-order weak interaction, we can con-

struct the bilocal operators for the second-order interaction

BWW (y) =
∫

d4xT [O∆S=1
u` (x)O∆S=0

u` (y)]−{u→ c} (3.5a)

BZ(y) =
∫

d4xT [OW
u (x)OZ

` (y)]−{u→ c}. (3.5b)

Here BWW (y) and BZ(y) are the bilocal operators associated with W -W diagrams and Z-exchange
diagrams, respectively. The minus sign in Eqs. (3.5a) and (3.5b) indicates the GIM cancellation
between the intermediate up and charm quark contributions.

Note that in lattice QCD calculations, the bilocal operator BWW are BZ(y) are constructed
using the bare lattice operators. The conversion factor Zlat→MS

O (µ,a) has removed the lattice spac-
ing dependence in the bare lattice operator. However, when two lattice operators approach to each
other, a new lattice spacing dependence could possibly appear. In our study of rare kaon decay, due
to the logarithmic SD divergence in BWW and BZ , we need to introduce a counter term to remove
this new lattice spacing dependence. Namely we calculate the K+ → π+νν̄ decay amplitude by
evaluating matrix elements of

〈π+
νν̄ |BWW (0)+BZ(0)|K+〉+ 〈π+

νν̄ |CW (a)O(6),lat(0)|K+〉 (3.6)

where CW (a)O(6),lat(0) is a counter term, which also contains the usual SD contributions. The
operator O(6),lat is given by a two-quark/two-neutrino operator (s̄d)V−A(ν̄ν)V−A. The coefficient
CW (a) can be determined by exploiting the non-perturbative Rome-Southampton methods [25, 26,
27] and electro-weak/QCD perturbation theory.

4. Research program

Using the methods described in the above sections, we can compute the LD contributions
to the rare kaon decay amplitudes. As the first step we use an ensemble with the lattice size
(L/a)3×(T/a)= 163×32, the pion mass mπ = 420 MeV, the kaon mass mK = 540 MeV, the charm
quark mass mMS

c (2 GeV) = 860 MeV, and an inverse lattice spacing a−1 = 1.73 GeV. Although
the parameters are unphysical, the small lattice significantly reduces the requirement on computer
resources and allows us to set up the calculation and test our methods. Our calculation involves
both W -W and Z-exchange diagrams. The statistical error of the LD contribution to the rare kaon
decay amplitude can be reduced to few-percent level by measuring 800 configurations.

In the study on the 163× 32 lattice, the systematic errors are not under control. One of the
significant systematic effects is from the 420 MeV pion mass. Approaching the physical pion mass
requires a larger lattice volume. Therefore, as the second step, we are performing the calculation
using an ensemble with a near-physical pion mass mπ = 170 MeV and a larger volume 323× 64
(lattice spacing inverse a−1 = 1.37 GeV). The second-step calculation allows us to achieve better
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control of the systematic effects from the unphysical pion mass. By using the lighter pion mass,
the allowed momentum region for {pπ , pν , pν̄} in the K → πνν̄ decay increases and we need to
evaluate the decay amplitude for multiple momenta. In addition, for this 323×64 calculation, the
mass of the kaon is larger than the energy of the two-pion state. Thus the exponentially growing
contamination from the two-pion intermediate state needs to be accounted for properly.

Another significant systematic effect arises from the lighter-than-physical charm quark mass.
Including the physical charm quark mass would require an ultra-fine lattice spacing. We plan to
use an ensemble with a lattice volume 643× 128, including both physical pion and charm quark
masses. Here the lattice spacing a−1 = 2.38 GeV is not sufficiently fine and will still cause a large
lattice artifact ∼ 20%. However, the LD contributions to the rare kaon decay amplitude are much
smaller than the SD top and charm quark contributions. Thus we expect that this lattice artifact will
only cause a ∼ 1% uncertainty in the total branching ratio.

5. Numerical results for W -W diagrams

In this section we present our numerical results for W -W diagrams. We first introduce the
scalar amplitude which can be extracted from the bilocal matrix element.

5.1 Scalar amplitude

d̄s̄
O∆S=1 O∆S=0

uu e, µ, τ

ν

ν̄

K+ π+

Type 1

d̄s̄

uu

ū, c̄

e, µ, τ

ν

ν̄

K+ π+O∆S=1 O∆S=0

Type 2

Figure 1: Quark and lepton contractions for W -W diagrams.

In W -W diagrams, using the bilocal operator BWW , we can calculate the matrix element

TWW =
∫

d4x〈π+
νν̄ |T{O∆S=1

u` (x)O∆S=0
u` (0)}|K+〉−{u→ c}, (5.1)

where the operators O∆S=1
u` and O∆S=0

u` are defined in Eq. (3.1). The quark and lepton contractions
for TWW are shown in Fig. 1.

Due to the chiral property of the massless neutrino and anti-neutrino, we can write TWW as a
combination of the scalar amplitude FWW (pK , pν , pν̄) and a spinor product ū(pν)/pK(1− γ5)v(pν̄)

through

TWW = (+i)FWW (pK , pν , pν̄)
[
ū(pν)/pK(1− γ5)v(pν̄)

]
, (5.2)

where pK , pν and pν̄ are the momenta for kaon, neutrino and anti-neutrino, respectively. In the
sections which describe the numerical results, we use Euclidean conventions for γ-matrices and
momenta. The +i factor appears due to the usage of Euclidean γ-matrices. For an on-shell particle
with mass m, the four momentum using Euclidean conventions is given by p = (~p, iE), where
E =

√
m2 +~p2.
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5.2 Dalitz plot
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Figure 2: Dalitz plot for K→ πνν̄ .

Given the momenta pK , pπ , pν and pν̄ , one can define three Lorentz invariants

s =−(pK− pπ)
2, t =−(pK− pν)

2, u =−(pK− pν̄)
2, (5.3)

where two of them are independent: s+ t +u = m2
K +m2

π . The physical region for these invariants
is shown in the Dalitz plot of Fig. 2, where we use the invariant s as the y-axis and ∆ = u− t as
the x-axis. Using the Dirac equation for the massless neutrinos, one can show that the modulus of
the decay amplitude vanishes at the edge of the Dalitz plot. Therefore, we are more interested in
momenta that are far away from the edge. Note that in the K→ πνν̄ decay it is almost impossible
to measure the neutrino momenta in today’s experiments. Once we obtain the (∆,s) dependence of
the decay amplitude, we need to integrate over the parameter ∆ and obtain a differential decay rate
dΓ/ds, which can be measured directly by experiments.

On the 163×32 lattice with a 420 MeV pion mass, we studied the decay amplitude at a single
momentum (∆,s) = (0,0). For this momentum the neutrino and the anti-neutrino carry the same
spatial momentum and the pion moves in the opposite direction with twice the momentum of each
of the ν and ν̄ . Due to the heavy pion mass used in our 163× 32 study, the allowed momenta
for the final-state particles are constrained to lie in a narrow region. Since multiple momentum
values would be so close to each other, they would be highly correlated and it would be difficult
to extract a clear momentum dependence from them. For this reason, we did not examine other
momentum values. The situation may change once we perform the calculation at the physical pion
mass. In this case we need to calculate the scalar amplitude at various values of (∆,s) to gain a
better understanding of the momentum dependence.

6
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5.3 Exponentially growing contamination at large Euclidean time

In the second-order weak interaction, given a bilocal matrix element
∫

d4x〈 f |T [O1(x)O2(0)]|i〉,
one can insert a complete set of intermediate states in-between the two interpolating operators, O1

and O2. A Euclidean time integral in a interval of −Ta < t < Tb (Ta,Tb > 0) yields

∫ Tb

−Ta

dt
∫

d3~x〈 f |T [O1(~x, t)O2(0)]|i〉

= ∑
m

〈 f |O1|m〉〈m|O2|i〉
Em−E f

(
1− e(E f−Em)Tb

)
+∑

n

〈 f |O2|n〉〈n|O1|i〉
En−Ei

(
1− e(Ei−En)Ta

)
= ∑

m

〈 f |O1|m〉〈m|O2|i〉
Em−E f

+∑
n

〈 f |O2|n〉〈n|O1|i〉
En−Ei

+ exponential terms. (5.4)

The third line of Eq. (5.4) gives the second-order weak matrix element together with the unwanted
exponential terms. If the energies of the intermediate states is larger than that of the initial/final
state, i.e. Em/n > Ei = E f , then these extra terms exponentially vanish at large Ta/b. On the other
hand, if the energies of the intermediate states are below the energy of initial/final state, then one
needs to remove these extra terms which increase exponentially at large Ta/b.

Instead of fixing the operator O2 at time t2 = 0, one can adopt the method proposed in Ref. [16]
and vary the time locations of both O1 and O2 and sum these times over an interval of ta ≤ t1,2 ≤ tb

tb

∑
t1=ta

tb

∑
t2=ta

∫
d3~x〈φ f (t f )T [O1(~x, t1)O2(~0, t2)]φ

†
i (ti)〉e

Ei/ f (t f−ti)

= Tbox〈 f |O1(0)O2(0)|i〉

+ ∑
m

〈 f |O1|m〉〈m|O2|i〉
Em−E f

(
Tbox +

e(E f−Em)Tbox−1
Em−E f

)

+ ∑
n

〈 f |O2|n〉〈n|O1|i〉
En−E f

(
Tbox +

e(E f−En)Tbox−1
En−E f

)
, (5.5)

where φ
†
i and φ f are the interpolating operators that create the initial and final states. The time

locations ti and t f are required to satisfy ti� ta and t f � tb to gaurantee the ground-state dominance.
In Eq. (5.5) the time integral has been replaced by the time summation. The interval size Tbox

takes the value Tbox = tb− ta + a with a the lattice spacing. The exponential terms still exist in
Eq. (5.5). By evaluating the matrix elements for these intermediate states, whose energies are
smaller than Ei = E f , one can remove the exponentially growing contamination associated with

the factor e(E f/i−Em/n)Tbox−1
Em/n−E f/i

. Then one can fit the Tbox dependence of the integrated matrix element
to a linear function b0 + b1Tbox. The slope b1 gives the physical bilocal matrix element without
exponential contamination.

5.4 Preliminary numerical results

To study the exponentially growing time dependence in the W -W diagram, we define the unin-
tegrated scalar amplitude with explicit t = t∆S=1− t∆S=0 time dependence, where t∆S=1 is the time

7



P
o
S
(
C
D
1
5
)
0
3
3

Lattice QCD Study of K+→ π+νν̄ Xu Feng

for two-quark/two-lepton operator O∆S=1
q` and t∆S=0 the time for O∆S=0

q`

(+i)FWW (t)
[
ū(pν)/pK(1− γ5)v(pν̄)

]
≡
∫

d3~x〈π+
νν̄ |T{O∆S=1

u` (~x, t∆S=1)O∆S=0
u` (~0, t∆S=0)}|K+〉−{u→ c}. (5.6)

We have imposed the energy conservation condition EK = Eπ +Eν +Eν̄ for the initial and final
states. According to time translation invariance, the amplitude FWW (t) depends only on the time
separation between O∆S=1

u` and O∆S=0
u` . The scalar amplitude FWW (pK , pν , pν̄) can be obtained by

integrating FWW (t) over the time separation t.
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Figure 3: The scalar amplitude for Type 1 diagram. In the left panel the unintegrated scalar amplitude
FWW (t) as a function of t = t∆S=1− t∆S=0 is shown. The black circle, red square and green diamond symbols
stand for the data points associated with three lepton flavors e, µ and τ , respectively. In the right panel, the
integrated scalar amplitude as a function of Tbox is shown. The exponentially growing contamination has
been removed for the three lepton flavors. For a comparison, we also show the µ-data, which still contains
the exponentially growing contamination, by the red triangle-up symbol.

For the Type 1 diagram given in Fig. 1, the corresponding unintegrated scalar amplitude is
shown in the left panel of Fig. 3. At the time region t∆S=1� t∆S=0, the intermediate state is dom-
inated by the ground state, i.e. the single lepton state. Among the three lepton flavors ` = e,µ,τ ,
we have observed the exponentially growing time dependence for µ . This is consistent with our
expectation since the muon mass is lighter than the initial kaon mass. For the e flavor, the ex-
ponentially growing behavior does not appear due to the helicity suppression in the process of
K+ → e+ν → π+νν̄ . For the τ flavor, since the intermediate states are much heavier than the
initial state, there are no exponentially growing contributions. We calculated the matrix elements
〈π+νν̄ |O∆S=0

u` (0)|`+ν〉 and 〈`+ν |O∆S=1
u` (0)|K+〉, which give the contribution for the ground inter-
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mediate state. Using these matrix elements as inputs, we are able to remove the exponentially
growing contamination.

In our calculations, we use the method described by Eq. (5.5). Both the times t∆S=1 and
t∆S=0 are integrated over an interval with a size Tbox. The integrated amplitude as a function of
Tbox is shown in the right panel of Fig. 3. The red triangle-up data points show the amplitude
for the µ flavor, which contains the exponentially growing contamination. The red square points
show the same amplitude without exponential contamination. As we can see, after removing the
contamination, the data can be described by a linear function. Through the fit, we determine the
scalar amplitude FWW (pK , pν , pν̄) for three lepton flavors. The corresponding results are shown in
Table 1. For a comparison, we use a model, which assumes only single-lepton contribution in the
intermediate state, to estimate the scalar amplitude

model: FWW =− fK fπ

2q2

q2 +m2
`

, q2 = (pK− pν)
2, (5.7)

where fπ and fK are pion and kaon decay constants. As shown in Table 1, the lattice results agree
well with the model prediction. It suggests the ground-state dominance for the Type 1 diagram,
and the excited-intermediate-state effects are very small (. 3%).

FWW Type 1 model Type 2
e −1.685(47)×10−2 −1.740(6)×10−2 1.123(17)×10−1

µ −1.818(40)×10−2 −1.822(6)×10−2 1.194(18)×10−1

τ 1.491(36)×10−3 1.471(5)×10−3 4.690(77)×10−2

Table 1: Lattice results for the scalar amplitude from the W -W diagrams. All the results are shown in
lattice units. The model values are compiled using the lattice QCD determination of fπ = 0.08904(19) and
fK = 0.09769(14) at mπ = 420 MeV.

Compared to the Type 1 diagram, the Type 2 diagram is more interesting. It is related to the
GIM mechanism and the logarithmic SD divergence. The unintegrated scalar amplitude as a func-
tion of t∆S=1−t∆S=0 is shown in Fig. 4. By zooming into the plots, we can observe the exponentially
growing time dependence for the µ flavor. Such time dependence is not very significant since now
the ground intermediate state is given by a lepton together with a neutral pion (420 MeV) and its
energy is of a similar size as the initial kaon mass. Although small, such exponential contamina-
tion still contributes a sizeable systematic effect. We therefore calculate the matrix elements of
〈π+νν̄ |O∆S=0

u` (0)|π0`+ν〉 and 〈π0`+ν |O∆S=1
u` (0)|K+〉 to remove this contamination. For the Type

2 diagram, we do not observe the exponentially growing behavior for the e flavor. Usually there is
no helicity suppression for the e flavor, since at t∆S=1� t∆S=0 the Type 2 diagram is dominated by
the semi-leptonic intermediate state, rather than the leptonic one. In our lattice calculations, we use
the discrete lattice momenta (2π/L)~n for the intermediate hadronic particles. According to spatial
momentum conservation, the momenta for the intermediate lepton are given by −(2π/L)~n−~pν .
With this setup, for the ground intermediate state, the neutral pion carries zero momentum and
the helicity suppression still takes effect for the e flavor. This is the reason why the exponentially
growing contamination disappears for the e flavor. The method used to discretize the spatial mo-
menta for the intermediate-state particles is not unique. It will introduce a power-law finite-size
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Figure 4: Unintegrated scalar amplitude for the Type 2 diagram.
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Figure 5: Integrated scalar amplitude for the Type 2 diagram.
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effect [28]. Controlling such finite-size effect is one of the research topics in our rare kaon decay
project.

The integrated scalar amplitude for Type 2 diagram is shown in Fig. 5. By fitting the lattice
data to a linear function of Tbox, we determine the values for FWW and list them in Table 1. These
values are much larger than the ones from Type 1 diagram. Note that the amplitude for Type 2
diagram contains a logarithmic SD divergence. This lattice cut-off SD piece must be removed by
the counter term shown in Eq. (3.6) and replaced by the physical SD contribution.

6. Numerical results for Z-exchange diagrams

d̄s̄

uu

ν

ν̄

K+ π+

OZ
ℓ

OW
q

connected diag.

d̄s̄

uu

ū, c̄

ν

ν̄

K+ π+

OZ
ℓ

OW
q

self-loop diag.

d̄s̄

uu

u, d, s, c

OZ
ℓ

ū, c̄

ν

ν̄

K+ π+OW
q

disconnected diag.

Figure 6: Samples of contractions contributing to Z-exchange diagrams. There are three different contrac-
tion structures: connected, self-loop and disconnected diagrams. For each of them we have picked up one
example. A complete set of contractions can be found in our previous publication [20].

Samples of Z-exchange diagrams are given in Fig. 6. We write the bilocal matrix element in
the form

TZ =
∫

d4x〈π+
νν̄ |T [OW

u (x)OZ
` (0)]|K+〉−{u→ c}

= T Z
µ

[
ū(pν)γµ(1− γ5)v(pν̄)

]
, (6.1)

where OW
q and OZ

` are defined in Eqs. (3.2) and (3.4). The hadronic part of TZ is given by

T Z
µ =

∫
d4x〈π+|T [OW

u (x)JZ
µ (0)]|K+〉−{u→ c}. (6.2)

We separate T Z
µ into two parts: T Z

µ = T Z,V
µ +T Z,A

µ , corresponding to the vector (V ) and axial vector
(A) components of JZ

µ . The K→ πZ∗ form factors can be obtained through

T Z,i
µ = (+i)

(
FZ,i
+ (q2)(pK + pπ)µ +FZ,i

− (q2)qµ

)
, i =V,A, (6.3)

with q = pK− pπ .
Since the spinor product ū(pν)/q(1− γ5)v(pν̄) vanishes under the assumption of massless neu-

trinos, only the form factors FZ,i
+ (q2) contribute to the decay amplitude. For the vector current, the

Ward-Takahashi identity guarantees

(m2
K−m2

π)F
Z,V
+ (q2) = q2FZ,V

− (q2). (6.4)

For the axial vector current, to separate FZ,A
+ (q2) from T Z,A

µ , we can compute the amplitude T Z,A
µ

for different µ-polarization directions. This would require that either the kaon in the initial state or
the pion in the final state carries non-zero spatial momentum.

11
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For the Z-exchange diagram a complete set of intermediate states can be inserted in-between
OW

u and JZ
µ in Eq. (6.2). We need to remove the exponentially growing contamination for those

intermediate states whose energies are smaller than the initial kaon mass. For the vector current
insertion, Ref. [20] shows that the parity-odd intermediate states, |π+〉 and |3π〉, can cause expo-
nentially growing contamination and need to be subtracted. For the axial vector current insertion,
the parity-even state |2π〉 will produce the exponentially growing contamination.

6.1 Local vector current and short-distance divergence

If one uses the conserved vector current, according to gauge invariance, one can write T Z,V
µ (pK , pπ)

as

T Z,V
µ (pK , pπ) = (+i)

(
q2

m2
K−m2

π

(pK + pπ)µ +qµ

)
FZ,V
− (q2). (6.5)

The simplest momentum setup for the K → πZ∗ transition is ~pK = ~pπ =~0, where ~pK and ~pπ are
the spatial momenta for the kaon in the initial state and the pion in the final state. It appears that
such a momentum choice is not very useful since the kinematic factor q2

m2
K−m2

π

(pK + pπ)µ + qµ is

then equal to 0. As a consequence, the transition amplitude T Z,V
µ vanishes. However, if one uses

the local vector current instead of the conserved one, then this momentum choice can be used to
obtain a SD correction.

By using the local vector current, the Ward identity is violated and there will be a SD sin-
gularity when the operator JZ,V

µ approaches the operator OW
q . We must introduce a counter term

X(s̄d)V−A to correct this unphysical SD contribution which is cut off by the lattice spacing. Namely,
we evaluate the bilocal matrix element together with a local matrix element

T Z,V
µ (pK , pπ) = ZV

∫
d4x〈π+|T [OW

u (x)JV,loc
µ (0)]|K+〉−{u→ c}

+X〈π+|(s̄γµ(1− γ5)d(0)|K+〉, (6.6)

where JV,loc
µ is a local vector current. For the LD contribution, we have ZV JV,loc

µ = JV,con
µ , where ZV

is the vector current renormalization constant and JV,con
µ is the conserved vector current. For the

SD contribution, X(s̄d)V−A has been introduced to correct the SD divergence in OW
u (x)JV,loc

µ (0) at
x→ 0. Here we need to determine the value for X . A natural condition we can use is T Z,V

µ = 0 for
~pK = ~pπ = 0. We therefore compute the bilocal matrix element for two momentum choices: one
has been discussed in Sect. 5.2; the other is ~pK = ~pπ = 0. The latter is used for the SD correction.
Combining the two momentum choices together, we can determine the physical scalar amplitude
for the Z-exchange diagram with the vector current insertion.

6.2 Preliminary numerical results

In this subsection, we first present the numerical results for the vector current insertion. The
unintegrated matrix elements

∫
d3~x〈π+|T [HW (~x, t)JV,loc

µ (0)]|K+〉 as a function of the time separa-
tion t are shown in the upper panel of Fig. 7, where the Hamiltonian HW is given by HW =OW

u −OW
c .

Since the operator OW
q consists of Q1,q and Q2,q operators, we show the numerical results for both

cases. The polarization direction for the vector current JV,loc
µ is chosen to be µ = t. The black circle

12
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Figure 7: Unintegrated matrix elements for the Z-exchange diagram with the vector current insertion.
The vector current polarization direction is chosen to be µ = t. In the upper panel, the matrix elements∫

d3~x〈π+(pπ)|T [HW (~x, t)JV,loc
µ=t (0)|K+(0)〉 (for Q1,q and Q2,q components) as a function of t is shown. The

black circle data points show the lattice results for the momentum mode ~pK = ~pπ =~0; the red square points
show the results for ~pK = 0 and ~pπ 6= 0. The exponentially growing time dependence can be seen at t� 0.
In the lower panel, the matrix elements are calculated using a new Hamiltonian H ′W = HW + cs(s̄d), where
the exponentially growing contamination has been removed.

data points show the lattice results for the momentum ~pK = ~pπ =~0; the red square points show the
results for ~pK = 0 and ~pπ 6= 0. At mπ = 420 MeV and mK = 540 MeV, the on-shell K+→ π+νν̄

decay only allows the pion to carry a small momentum (. 30% of the pion mass). Thus, the black
circle and red square data points are very close to each other.

In the time region t� 0, the dominant intermediate state is the single π+ state. Since this state
is lighter than the initial state, there is exponentially growing contamination as shown in the upper
panel of Fig. 7. In addition to the method described in Sect. 5.3, here we adopt a second approach
to remove the exponentially growing contamination. We add to the weak Hamiltonian HW a scalar
density operator cs(s̄d): H ′W = HW + cs(s̄d). Using the chiral Ward identities, one can prove that
the scalar density operator cannot contribute to an on-shell matrix element [16, 17, 20]. One can
choose an appropriate value for cs through the equation

〈π+(0)|HW (0)+ cs(s̄d)(0)|K+(0)〉= 0. (6.7)

In the lower panel of Fig. 7 we show the unintegrated matrix element with the new Hamiltonian
H ′W . By adding the scalar density term, the exponentially growing contamination is removed.

For the axial vector current insertion, the unintegrated matrix elements are shown in Fig. 8.
At t � 0 the time dependence is dominated by the two-pion state, whose energy is larger than
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the initial kaon mass, since mπ = 420 MeV. Thus the contamination is exponentially suppressed.
(When in the future we use the physical pion mass, the two-pion contamination will not be expo-
nentially suppressed, but can be removed by adding a pseudo-scalar density operator cp(s̄γ5d) to
HW .) By comparing the label of the y-axis of Figs. 7 and 8, our numerical results show that the
axial vector current contributions are much larger than the vector current contributions. Note that
the Z-exchange diagram with the axial vector current insertion is logarithmically divergent. A SD
correction is essential in our numerical study.

In addition to the connected and self-loop diagrams in Fig. 6, we also calculate the discon-
nected diagrams and attempt to produce results including all quark-contraction diagrams. As shown
by the green diamond symbol in Fig. 8, the absolute size of disconnected diagrams is much smaller
than the size of connected and self-loop diagrams. Although the disconnected diagrams have much
larger relative statistical errors, they do not contribute a large uncertainty in the total decay ampli-
tude. Thus a complete lattice QCD calculation including all the diagrams is practical.
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1
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t
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Figure 8: Unintegrated matrix elements for the Z-exchange diagram with the axial vector current insertion.
The axial vector current polarization direction is chosen to be µ = t. At mπ = 420 MeV, no exponentially
growing contamination is observed at t � 0. The black circle data points show the lattice results for the
momentum ~pK = ~pπ =~0; the red square points show the results for ~pK = 0 and ~pπ 6= 0. These results
include only the connected and self-loop diagrams. For the disconnected diagrams, the corresponding results
are shown by the green diamond symbol. Although noisy, the disconnected contributions are much smaller
than the connected ones.

7. Conclusion

Recognizing the fact that NA62 experiment at CERN is collecting data for K+→ π+νν̄ and
the KOTO experiment at J-PARC is designed to search for KL→ π0νν̄ , these two rare kaon decay

14



P
o
S
(
C
D
1
5
)
0
3
3

Lattice QCD Study of K+→ π+νν̄ Xu Feng

modes become important tools, complementary to the large ET searches at the LHC, in searches for
an understanding of physics beyond the SM. In both channels the decay amplitudes are dominated
by SD contributions. For KL decay, the LD contribution can be safely neglected. For K+ decay,
the LD effects are expected to be a few percent. Although the size is small, it now serves as the
dominant theory uncertainty for the SM prediction of Br(K+→ π+νν̄). It is therefore timely for
lattice QCD to provide the LD contributions to K+→ π+νν̄ with controlled uncertainties.

The calculation of the K+ → π+νν̄ decay amplitude is highly non-trivial. It involves the
calculation of 4-point correlation functions and bilocal matrix elements. To correctly reproduce
the physical amplitude, we need to isolate and remove the exponentially growing contamination
from the intermediate states whose energies are lower than kaon initial state. We also need to deal
with the logarithmic divergence which results when the two operators in the bilocal matrix element
come close to each other. The power-law finite volume effect is another important systematic error
which we need to control.

Using the methods developed by Refs. [14, 15, 16, 17, 28], our exploratory study shows the
feasibility to calculate the LD contributions to the rare kaon decay K+→ π+νν̄ using lattice QCD.
Although the calculation reported here is performed on a gauge configuration ensemble with un-
physical pion and charm quark mass (mπ = 420 MeV and mMS

c (2 GeV) = 860 MeV), we are now
performing the calculation at a near-physical pion mass. The future plan is to include the physical
charm quark mass as well. We expect that, in the near future, exa-scale computing will enable us
to perform a complete calculation of the rare kaon decay amplitude with all the systematic uncer-
tainties under control.
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