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We discuss the fate of the axial U(1) symmetry in 2-flavor QCD at finite temperature, where the
non-singlet chiral symmetry is restored. We first summarize the previous theoretical investigation
on the relation between the eigenvalue density of the Dirac operator and the axial U(1) symmetry.
We show that the eigenvalue density near the origin behaves as λ γ with γ > 2 in the chirally
symmetric phase, where λ is an eigenvalue. This implies that the axial U(1) symmetry is partially
restored, so that the low energy symmetry of the theory becomes SU(2)⊗ SU(2)⊗ Z4. Secondly,
we report recent numerical investigations on this issue by lattice QCD simulations with lattice
chiral fermions such as Overlap or improved domain-wall fermions. Our preliminary results
indicate that the eigenvalue density seems to have a gap at the origin just above Tc, the temperature
of the chiral symmetry restoration, which implies the axial U(1) symmetry is effectively restored
at high temperature. We also point out an importance of the exact lattice chiral symmetry to obtain
correct results on this issue.
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1. Introduction

The non-singlet chiral symmetry of QCD, SU(N f )L⊗ SU(N f )R, which is spontaneously broken
down to SU(N f )V at low temperature, is expected to be restored above the critical temperature
Tc. The singlet axial U(1) symmetry, on the other hand, is broken explicitly by the anomaly at
low temperature, and the fate of this symmetry above Tc still remains an open issue. Whether
the axial U(1) (U(1)A) symmetry is effectively restored or not near Tc has a phenomenological
importance[1, 2].

The Banks-Cahser relation[3] gives lim
m→0

〈ψ̄ψ〉 = πρ(0),which says that ρ(0) = 0 if the non-

singlet chiral symmetry is restored at T > Tc, while Ref. [4] pointed out that U(1)A symmetry is
also restored if ρ(λ ) has a gap near the origin such that ρ(λ ) = 0 for ∀λ ≤ λ0 6= 0.

Other quantities sensitive to the U(1)A symmetry are susceptibilities of scalar and pseudo-
scalar operators, defined by χσ −χη and χπ −χδ for N f = 2, where

χ
X = lim

V→∞

1
V

∫
d4x〈MX(x)MX(0)〉, MX(x) = ψ̄(x)(ΓX ⊗TX)ψ(x), V =

∫
d4x (1.1)

for Γσ ⊗ Tσ = 1⊗ 1 (scalar singlet), Γη ⊗ Tη = γ5 ⊗ 1(pseudo-scalar singlet), Γπ ⊗ Tπ = γ5 ⊗
τa(pseudo-scalar triplet) and Γδ ⊗Tδ = 1⊗ τa(scalar triplet). If the U(1)A symmetry is restored,
χσ −χη and χπ −χδ vanish in the chiral limit.

In this report, we first derive constraints on the eigenvalue density of the Dirac operator using
purely analytic method, and address the fate of U(1)A symmetry at T ≥ Tc. We then present our
preliminary results of recent numerical investigations on the fate of U(1)A symmetry, considering
both eigenvalue density and U(1)A susceptibility.

2. Theoretical investigation

We here present the previous theoretical investigation in Ref. [5] on the fate of U(1)A symmetry
in the chiral symmetric phase.

2.1 Set up

We mainly consider 2-flavor QCD, using the lattice regularization, in order to avoid ambi-
guities associated with divergences in the continuum theory. For quarks, we employ the over-
lap fermion formulation, which poses the exact lattice “chiral" symmetry compatible with U(1)A

anomaly through the Ginsparg-Wilson (GW) relation[6] that D(A)γ5 + γ5D(A) = aD(A)Rγ5D(A),
where D(A) is the overlap Dirac operator of the massless theory for a given gauge configuration
A, a is the lattice spacing, and R is a real parameter. The GW relation gives λ A

n + λ̄ A
n = aRλ̄ A

n λ A
n ,

where λ A
n is an eigenvalue of D(A) satisfying D(A)φ A

n = λ A
n φ A

n for a eigenfunction φ A
n , while its

complex conjugate λ A
n also becomes an eigenvalue as D(A)γ5φ A

n = λ̄ A
n γ5φ A

n via the GW relation.
Note that real eigenvalues must be either λ A

0 = 0 (zero mode) or λ A
n = 2/Ra (doubler mode), both

of which can be made chiral. Eigenvalues λ A
n = x+ iy forms a circle as shown in Fig. 1

The quark propagator can be expressed also in terms of these eigenvalues and eigenfunctions
as

D−1(A)(x,y) = ∑
n

[
φ A

n (x)(φ A
n )†(y)

fmλ A
n +m

+
γ5φ A

n (x)(φ A
n )†(y)γ5

fmλ̄ A
n +m

]
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Figure 1: Eigenvalues λ A
n = x+ iy of the overlap Dirac operator D(A).

+
NA

R+L

∑
k=1

1
m

φ
A
k (x)(φ A

k )†(y)+
NA

D

∑
K=1

Ra
2

φ
A
K (x)(φK −A)†(y) (2.1)

with fm = 1−Rma/2, where m is the quark mass, φ A
n represents a bulk mode, which is non-chiral

due to the complex pair, and φ A
k is a chiral zero mode, while φ A

K is a chiral doubler mode. The total
number of chiral zero (doubler) modes is given by NA

R+L (NA
D). A measure for a gauge filed is then

written as

Pm(A) = e−SYM(A)mN f NA
R+L (ΛR)N f NA

D ∏
Imλ A

n >0

(
Z2

m|λ A
n |2 +m2)N f

, (2.2)

where SYM is the gauge action, ΛR = 2/(Ra) and Z2
m = 1−m2/Λ2

R. It is clear that Pm is positive
definite and an even function of non-zero m for even N f . In this report, we take N f = 2.

A restoration of non-singlet chiral symmetry is compactly expressed for susceptibilities as

lim
m→0

〈δ aOn1,n2,n3,n4〉m = 0, On1,n2,n3,n4 = (Pa)n1(Sa)n2(P0)n3(S0)n4 , (2.3)

where Sa,0 =
∫

d4xSa,0(x) and Pa,0 =
∫

d4xPa,0(x) with scalar and pseudo-scalar densities, Sa,0(x)
and Pa,0(x), respectively. Here δ a is the infinitesimal non-singlet chiral rotation, under which scalar
and pseudo-scalar densities transform for N f = 2 as

δ
aSb = 2δ

abP0, δ
aPb =−2δ

abS0, δ
aS0 = 2Pa, δ

aP0 =−2Sa. (2.4)

2.2 Assumptions

In addition to our basic assumption that non-singlet chiral symmetry is restored at T ≥ Tc, we
make following two assumptions in our analysis.

If O(A) is m-independent, we assume

〈O(A)〉m :=
1
Z

∫
DAPm(A)O(A) = f (m2), (2.5)
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where f (x) is analytic at x = 0. Note that this assumption does not hold if the chiral symmetry is
spontaneously broken. For example,

lim
V→∞

1
V
〈Q(A)2〉m = m

Σ

N f
+O(m2) (2.6)

at T < Tc, where Q(A) is the topological charge and Σ is the chiral condensate.
We also assume that the eigenvalue density of the overlap Dirac operator can be expanded as

ρ
A(λ ) := lim

V→∞

1
V ∑

n
δ

(
λ −

√
λ̄ A

n λ A
n

)
=

∞

∑
k=0

ρ
A
k

λ k

k!
, (2.7)

for a small λ . More precisely, configurations whose eigenvalue density can not be expanded at the
origin are measure zero in the configuration space.

At non-zero lattice spacing, integrals of λ k over all eigenvalues are convergent, since all eigen-
values satisfy the upper bound such that |λ A

n | ≤ ΛR.

2.3 Analysis

In this subsection, we present some examples of our analysis.
We first consider a constraint for O1,0,0,0 as

lim
m→0

lim
V→∞

〈δ aPa〉m
2V

= lim
m→0

lim
V→∞

〈−S0〉m
V

= 0. (2.8)

Using eq. (2.1), we have

lim
V→∞

〈−S0〉m
V

= lim
V→∞

N f

mV
〈NA

R+L〉m +N f 〈I1〉m, (2.9)

where

I1 =
∫

ΛR

0
dλ ρ

A(λ )g0(λ )
2m

Z2
mλ 2 +m2 = πρ

A
0 +O(m) (2.10)

with g0(x2) = 1− x2/Λ2
R. Here a source of m singularities is 2m/(Z2

mλ 2 +m2), which comes from
D−1(A), not from ρA. Eq. (2.8) implies

〈ρA
0 〉m = O(m2), lim

V→∞

〈NA
R+L〉m
V

= O(m2). (2.11)

From eq. (2.3) for O1,0,0,N−1 with an arbitrary N, we obtain

0 = − 1
V N 〈S

N
0 〉m = (−1)N+1NN

f

〈(
NA

R+L

mV
+ I1

)N〉
+

(
1
V

)
(2.12)

in the large volume, which leads to

lim
V→∞

〈NV
R+L〉m
V

= 0. (2.13)

We next consider O0,1,1,0, which gives

0 = lim
m→0

lim
V→∞

χ
η−δ =− lim

m→0
lim

V→∞

N2
f 〈QA〉m
m2V 2 +N f lim

m→0

〈(
I1

m
+ I2

)〉
m

, (2.14)
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where

I2 = 2
∫

ΛR

0
dλ ρ

A(λ )
m2g2

0(λ
2)−λ 2g0(λ 2)

(Z2
mλ 2 +m2)2 → I1

m
+ I2 =

π

m
ρ

A
0 +2ρ

A
1 +O(m), (2.15)

and QA = NA
R −NA

L is the index of the overlap Dirac operator, which gives a definition of the
topological charge for a given gauge configuration A. We then obtain

lim
m→0

lim
V→∞

N f 〈QA〉m
m2V 2 = 2 lim

m→0
〈ρA

1 〉m. (2.16)

2.4 Final results

Repeating similar analysis for higher susceptibilities, we finally obtain

lim
m→0

〈ρA(λ )〉m = lim
m→0

〈ρA〉m
λ 3

3!
+O(λ 4). (2.17)

It is noted that we should not obtain no more constraints on higher 〈ρA
n 〉m from general considera-

tions, since lim
m→0

〈ρA
3 〉m 6= 0 even for a free theory, which poses both non-singlet and singlet chiral

symmetries. In addition to the above result, we have

〈ρA
0 〉m = 0, lim

V→∞

1
V k 〈(N

A
R+L)

k〉m = 0, lim
V→∞

1
V k 〈(Q

A)2k〉m = 0 (2.18)

for small but non-zero m.

2.5 Consequences

The result in the previous subsection leads to the constraint for the singlet susceptibility at
T ≥ Tc as

lim
m→0

χ
π−η = lim

m→0
lim

V→∞

N2
f 〈(QA)2〉m

m2V
= 0, (2.19)

which implies that screening lengths of π and η are equal: ξπ = ξη . This result, however, is
necessary but not sufficient condition for the restoration of the U(1)A symmetry.

The overlap fermion satisfies the anomalous Ward-Takahashi identities for the singlet as

〈J0O+δ
0O〉m = O(m), (2.20)

where J0 is the measure term representing the anomaly and δ 0 is the flavor singlet chiral transfor-
mation. For On1,n2,n3,n4 , we can show

lim
V→∞

1
V k 〈J

0O〉m = lim
V→∞

〈
(QA)2

mV
×O(V 0)

〉
m

= 0, (2.21)

where k is the smallest integer which makes the V → ∞ limit finite. Combining this with the
anomalous Ward-Takahashi identities (2.20), we conclude that

lim
m→0

lim
V→∞

1
V k 〈δ

0O〉m = 0, (2.22)
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Group Quark Size ρ(λ ) U(1)A mesons U(1)A

JLQCD13[7] OV with fixed Q 2 fm gap degenerate restored
TWQCD13[8] optimal DW 3 fm no gap degenerate restored
HotQCD12[9] DW 2,3 fm no gap no violated

LLNL/RBC13[10] DW 4 fm no gap no violated
HotQCD14[11] Möbius DW 4,11 fm N/A no violated

Dick et al.15[12] OV on HISQ 3,4 fm no gap no violated

Table 1: Summary of recent investigations on U(1)A symmetry at T > Tc. Results on the gap of the
eigenvalue density ρ(λ ) and the degeneracy of U(1)A meson correlation functions are given in 4th and
5th columns, respectively. The conclusion on U(1)A symmetry just above Tc is given in the last column.

which means that the violation of U(1)A symmetry by the anomaly becomes invisible for these
bulk susceptibilities at T ≥ Tc. Thus the low energy effective theory for pseudo-scalar mesons in
3-dimensions poses SU(2)L⊗ SU(2)R⊗ Z4 symmetry at T ≥ Tc, rather than SU(2)L⊗ SU(2)R⊗
U(1)A expected for the restration of the U(1)A symmetry.

There are a few remarks. To obtain results in this section, the following conditions are impor-
tant: the large volume limit as V → ∞, the chiral limit as m → 0 and the lattice chiral symmetry
realized by the GW relation that Dγ5 + γ5D = aDRγ5D. A lack of one of these conditions in nu-
merical simulations may easily lead to incorrect conclusions.

We can generalize our analysis in the case of the fractional power for the eigenvalue density
such that ρA(λ )' cAλ γ .If the non-singlet chiral symmetry is restored, we can derive the condition
that γ > 2, which is consistent with eq. (2.17).

3. Recent numerical results

3.1 Status of recent numerical simulations

Although many numerical investigations in lattice QCD have been attempted from the end of
the last century, in order to answer the question whether U(1)A symmetry is restored or not in the
chirally symmetric phase at finite temperature, so far no definite conclusion is obtained. Situa-
tion gets worse recently, as the eigenvalue density of lattice Dirac operators has been calculated
numerically. Table 3.1 shows a summary of recent investigations.

While the JLQCD collaboration[7] and TWQCD collaboration[8] have concluded that U(1)A

symmetry is restored just above Tc, HotQCD collaboration[9, 11] and LLNL/RBC collaboration[10]
have reported that U(1)A symmetry is still violated just above Tc. All these collaborations have em-
ployed the lattice chiral quarks such as overlap (OV) and domain-wall (DW) formulations with
various improvements in their numerical simulations, which pose a good chiral symmetry even at
finite lattice spacing. In addition, Dick et al. has employed the valence overlap quarks on con-
figurations generated by highly improved staggered quark(HISQ) action, and also concluded the
violation of U(1)A symmetry.

What causes these differences ? Possible sources which cause differences are lattice volumes,
quark masses and quark actions. One may naively think that the difference between the overlap
quark employed, which satisfies an exact GW relation, and the (improved) domain-wall quark,

6
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Figure 2: Eigenvalue density ρ(λ ) for three different cases at T ' 190MeV' 1.05Tc and L' 3 fm. (Upper)
DW operator on DW configurations. (Lower-Left) OV operator on DW configurations. (Lower-Right) OV
operator on OV configurations by reweighting. The horizontal axis in each figure is the eigenvalue λ in unit
of MeV, while the vertical axis is the density ρ(λ ) in unit of GeV3, normalized by the spatial volume.

which has an approximated one, is numerically very tiny. We have recently found, however, that
such a tiny difference can produce large difference in the eigenvalue density and the U(1)A suscep-
tibility. In this section, we report our preliminary results on these two points.

3.2 Eigenvalue density, partially quenching and reweighting

Tomiya et al. for JLQCD collaboration[13] have attempted the following analysis. They first
generated gauge configurations in 2-flavor lattice QCD with an improved DW quarks, which has
very small violation of GW relation[14]. Then eigenvalue density ρ(λ ) has been evaluated in three
different ways.
(0)They calculate ρ(λ ) of the improved DW operator on configurations generated by the same
improved DW quark. This is called the original eigenvalue density.
(1) They calculate ρ(λ ) of the overlap operator on these configurations. Since the valence and sea
quarks are different, this is called the partially quenched eigenvalue density.
(2) The reweighing factor from the improved DW to overlap quarks is calculated in order to obtain
the full overlap eigenvalue distribution from the partially quenched one. This is called the full
overlap eigenvalue density.

Fig. 2 shows the latest comparison of these 3 different ρ(λ ), reported in LATTICE 2015[15].
These eigenvalue densities are obtained at T ' 190 MeV ' 1.05Tc, just above Tc ' 180 MeV, on
L ' 3 fm, where L is the spatial lattice size. The bare quark mass is ma = 0.0025 in lattice unit,
which corresponds to m' 6 MeV at T ' 190 MeV.

The upper figure is the original eigenvalue density (DW operator on DW configurations),
which shows strong suppression of small eigenvalues, suggesting the restoration of U(1)A sym-

7
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Figure 3: Distribution of ∆ for three different cases at T ' 190MeV ' 1.05Tc and L ' 3 fm. (Left) DW
quarks on DW configurations. (Center) OV quarks on DW configurations. (Right) OV quarks on OV con-
figurations by reweighting. The horizontal axis shows ∆ in the log scale.

metry. More detailed analyses including the infinite volume limit and the chiral limit, however, are
needed for the definite conclusion. The lower-left figure is the partially quenched eigenvalue den-
sity (OV operator on DW configurations), which shows a peak at smaller eigenvalue near the origin,
in contrast to the original density. This peak must be an artifact of partially quenching, therefore
unphysical, since small eigenvalues are suppressed in the original density. In general, configura-
tions which give small eigenvalues of the OV operator are not suppressed by the determinant of
the DW quark, which is insensitive to such small eigenvalues. If configurations were generated by
the OV quarks, appearance of small eigenvalues of the OV operator would be highly suppressed.
This expectation is indeed the case, as seen in the lower-right figure, which shows the full overlap
eigenvalue density (OV operator on OV configurations by reweighting). The peak presented at the
origin for the partially quenched case completely disappears. Furthermore, small eigenvalues are
more strongly suppressed in the full OV than in the original DW, suggesting an appearance of the
gap at the origin.

The above results, though still preliminary, give us an important lesson that an exact lattice
chiral symmetry is essential to obtain the correct conclusion. A tiny violation of the chiral symme-
try may destroy the theoretically expected behavior of the density. In particular, partially quenched
calculations are dangerous: They are sometimes worse than original calculations with less lattice
chiral symmetry, since a mismatch between two Dirac operators artificially enhances appearance
of small eigenvalues.

3.3 U(1)A susceptibility

In ref. [16], Cossu et al. consider the U(1)A susceptibility ∆, defined by

∆ ≡ χ
π −χ

δ =
2〈NA

R+L〉m
V m2 + Bulk non-zero modes. (3.1)

We here discuss the update of the result in ref. [17, 18], where same configurations in the previous
subsection are employed.

In Fig. 3, the distribution of ∆ is plotted for three different cases as in the previous subsection.
In the left figure, ∆ is calculated the DW propagator on DW configurations. The vertical dashed

8
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red line around ∆ = 1 corresponds to the zero mode contribution,
2NA

R+L

V m2 at this quark mass and
volume. The light blue part of the histogram represents the contribution from configurations with
NA

R+L = QA = 0, while the dark blue corresponds to the one with NA
R+L = QA = 1. On this volume,

the zero mode contribution would dominate in ∆ if the GW relation were exact, so that the dark blue
would appear on the dashed red line while the light blue would give much smaller ∆. Therefore,
the spread of both light blue and dark blue over the large range of ∆ in the log scale indicates that a
tiny violation of the GW relation of the improved DW quark gives a big impact on ∆, which is an
indicator of the U(1)A symmetry violation.

The right figure shows the histogram of ∆ for the OV propagator on OV configurations by
reweighting, where QA = 1 contributions only appear on the dashed red line while QA = 0 con-
tributions give an order of magnitude smaller values. Since zero mode contributions are expected
to vanish in the infinite volume limit, ∆ becomes much smaller in that limit. The central one
corresponds to the partially quenched calculation by the OV propagator on DW configurations.
Although QA = 1 contributions are evaluated correctly and a majority of QA = 0 contributions is
small, some QA = 0 configurations give large contributions comparable to those with QA = 1. As
in the previous subjection, partially quenched results show accumulation of unphysical near zero
modes, which produce a large U(1)A violation.

Results in this subsection also support the conclusion in the previous subsection.

4. Conclusion

Both analytic and numerical investigations reported here indicate that U(1)A symmetry is ef-
fectively restored, so that the low energy symmetry of 2-flavor QCD above Tc is either SU(2)L⊗
SU(2)R⊗ Z4 (ρ(λ ) is gapless) or SU(2)L⊗ SU(2)R⊗ U(1)A (ρ(λ ) has a gap). The conformal boot-
strap method[19] confirms the perturbative prediction[2] that the 2nd order chiral phase transition
is possible for either case, though its universality class is different from the conventional SU(2)L⊗
SU(2)R ' O(4) chiral transition.
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