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1. Introduction

This proceeding is based on our previous work [1]. As matter of fact, one knows partially

QCD Green functions on three ranges of energies (i) deep Euclidean, where perturbative QCD and

OPE expansion methods can be applied, (ii) an intermediate Minkowski region, where resonances

are described by Regge trajectories and (iii) the strong interacting, low-energy region, described

by chiral perturbation theory (χPT) [2]. Unfortunately, global analytic expressions for each of

them are unknown due to the complexity of the non-perturbative properties of QCD. It is natural

to ask ourself if it is possible to reconstruct an approximate analytic expression satisfying all QCD

properties valid in any region. In this approach, we think that Regge trajectories, i.e. a linear growth

of the square of the resonance masses like M2
V (n) =σn GeV2 for the vectors, were conjectured long

ago, before QCD, and very well verified phenomenologically [3] play a crucial role [4, 5, 6, 7].

In the three energy sectors, the AdS/CFT correspondence [8, 9, 10] has been useful to describe

the QCD properties. At low energy, QCD properties like the chiral symmetry breaking (χSB)

parameters, Fπ and the Gasser-Leutwyler coefficients Li’s of the O(p4) chiral Lagrangian have

been studied in several five dimensional set-ups. The basic feature of Hard-Wall (HW) models is to

simulate confinement by cutting drastically the extradimension of the AdS5 in the IR, producing an

infinite spectrum of Kaluza-Klein (KK) states to be identified with vector resonances of increasing

masses. χSB in the axial sector is triggered either by a scalar field in the bulk [11, 12] or by

appropriate boundary conditions [13]. A recent review of all these models and their relation with

the light-front holographic QCD approach is Ref [15].

All these models have a good description of the deep Euclidean region; for instance the correct

two point function recover both the partonic log and a pretty well description of low energy QCD,

obtaining values of the chiral parameters Fπ and the Gasser-Leutwyler coefficients Li’s which are

close to the physical ones. In fact, it was observed that these HW models [11, 12, 13] have the

same two point vectorial Green function as the one obtained by Migdal long ago who proposed an

ad hoc prescription to perform the analytic continuation of the perturbative deep Euclidean QCD

result to the Minkowski region [17, 16].

In order to reproduce resonances masses with a Regge spacing, one can consider a 5D model

with AdS metric and an additional field, the dilaton [18]. However, in this model it can be shown

that the partonic log of the two point vectorial Green function receives 1/Q2-corrections differently

from what holds in perturbative QCD Operator Product Expansion (OPE) [19, 20, 21, 22]. Nev-

ertheless, we find extremely interesting to have a model where the Regge region would be analyt-

ically related to the deep Euclidean region even though with the wrong OPE. This will be exactly

our starting point: OPE tells us the correct Green functions in the deep Euclidean in terms of gluon

and quarks condensates. Is it possible to modify the dilaton profile, φ(z) 7→ φ(z)+δφ(z), such to

comply with QCD requirements in the intermediate (Regge) region and UV (OPE) region? Once

this question has been answered in the affirmative, we are naturally led to address another important

problem, that does not have a satisfying answer in this "linear confinement" holographic approach

[18]: how to implement the effects of chiral symmetry breaking into our model. In fact, implement-

ing the correct OPE and mass spectrum for the axial sector, we will propose our post-diction of Fπ

and L10 (one of the the chiral O(p4) coefficients) in terms of our input parameters, i.e. the Regge

spacing and the QCD condensates. Our model, beside being a novel proposal for holographic
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QCD, links naturally to previous 4D QCD work where a phenomenological matching between low

energy and OPE was realised through Regge theory (or Veneziano model) [2, 23, 24, 5, 25, 26, 27].

2. Construction of the model

The Soft-Wall model is a five dimensional model where the additional coordinate, z, has the

range 0 < z < ∞ and background fields consist in a five-dimensional AdS metric and a dilaton field

Φ(z). The AdS metric is written as

gMN dxMdxN =
1

z2

(

ηµνdxµ dxν −dz2
)

, (2.1)

where ηµν = Diag(1,−1,−1,−1), the Greek indices µ ,ν = (0,1,2,3) referring to the usual 4-

dimensions, and the capital Latin ones M,N = (0,1,2,3,z) to the 5 dimensions. It was shown, in

[18], that with the choice of a quadratic profile of the dilaton field

Φ(z)
.
= κ2z2, (2.2)

the spectrum of vector resonances followed a Regge trajectory.

Our model is based on the following five dimensional action,

S5 =

∫

d4x

∫ ∞

0
dz w0(z) Tr

{

gMN (DMX)† (DNX)−m2
X

2

− 1

4g2
5

gMNgRS

(

F
MR
V F

NS
V +F

MR
A F

NS
A

)

}

, (2.3)

since the generic field strength (for vector and identical for axial vector) is FV MN = ∂MVM −
∂NVM − i [VM,VN ] and g2

5 = 12π2/Nc is the 5D coupling constant where Nc is the number of colors

of QCD, DM
X= ∂ M

X− i[VM,X]− i{AM,X}, where the 5D fields VM, AM and X are respectively

the vectorial, axial and scalar fields. We defined also,

w0(z)
.
=

e−Φ(z)

z
=

e−κ2z2

z
. (2.4)

2.1 The vectorial sector

Let’s consider first the vectorial sector. We shall work in the axial gauge Vz = 0. The AdS/CFT

correspondence prescribes that the boundary value of the 5D gauge field Vµ has to be identified

with the classical source vµ coupled to the the 4-dimensional vectorial current Ja
V µ =: q̄γµ taq :,

lim
z→0

V
a
µ ,z(x,z) = v

a
µ(x) . (2.5)

The corresponding equation of motion for the gauge field, derived from the Lagrangian (2.3),

is more easily written in terms of the 4-dimensional Fourier transform fV (−q2,z) of the field VM,

fV (−q2,z) v̂µ(q)
.
=

∫

d4x e−iq·x
Vµ ,0(x,z) , (2.6)
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where v̂µ is the Fourier transform of the source vµ . Using gauge invariance, one may assume the

v̂µ to be transverse and one obtains

∂ 2
z fV +∂z [lnw0(z)]∂z fV +q2 fV = 0 , (2.7)

with the boundary conditions (2.5)

fV (−q2,0) = 1 and fV (−q2,∞) = 0 . (2.8)

In this context, the vector-vector correlator ΠV ,

i

∫

d4x e−iq·x
〈

Ja
V µ(x) Jb

V ν(0)
〉

= δ ab
(

qµqν −q2ηµν

)

ΠV (−q2) . (2.9)

where q is the 4D momentum and the current Ja
V µ is the one defined before equation (2.5) is

extracted from the 5D expressions by taking the limit (with the Euclidean momentum Q2 .
=−q2)

Q2ΠV (Q
2) =

1

g2
5

lim
z→0

w0(z) fV (Q
2,z) ∂z fV (Q

2,z) . (2.10)

Our main concern is that the two-point function ΠV coming from the model built in 5D has

the following properties:

(i) The progression of its poles in the Minkowski region (the resonances) follows a Regge

trajectory.

In the Large-Nc limit of QCD, the two-point function ΠV could be written as a sum over an

infinite set of stable vector resonances [29, 30]

ΠV (Q
2) =

∞

∑
n=0

FV (n)
2

Q2 +MV (n)2
, (2.11)

where FV (n) are named decay constants and the MV (n) are the masses associated to the reso-

nances of the vectorial channel: ρ , ρ ′, ρ ′′,... . We assume that these resonances follow, in a

first approximation, a Regge progression [3],

MV (n)
2

∼
n→∞

σn , (2.12)

where the integer n is the radial excitation number and σ is related to the confining string

tension as explained in [18] and we can evaluate σ ≈ 0.90 GeV2 from [31, 32].

(ii) ΠV has the correct OPE. One of the very well-known properties of this two point function

is its OPE [33],

ΠV (Q
2) ∼

Q2→∞

1

2

Nc

12π2
ln

(

Λ2
V

Q2

)

+ 〈O2〉
1

Q2
+ 〈O4〉

1

Q4
+ 〈O6〉V

1

Q6
(2.13)

where in the large-Nc limit the coefficients of the OPE are given by














〈O2〉= 0

〈O4〉= 1
2

1
12π αs

〈

G2
〉

〈O6〉V = 1
2

(

− 28π
9

)

αs 〈ψ̄ψ〉2

, (2.14)

here αs stands for the strong coupling constant,
〈

G2
〉

for the gluon condensate, and 〈ψ̄ψ〉 for

the quark condensate.
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If one solves the differential equation (2.7) with the boundary conditions (2.8), one obtains

Q2Π
(0)
V (Q2) =−2κ2

g2
5

(

Q2

4κ2

)[

γE +ψ

(

Q2

4κ2
+1

)]

, (2.15)

which gives the following OPE,

Π
(0)
V (Q2) ∼

Q2→∞

1

2g2
5

ln

(

4κ2e−γE

Q2

)

+
κ2

g2
5

1

Q2
. (2.16)

Unfortunately, this solution (2.15) does not satisfy the full OPE (2.13) of the vectorial two-

point function. In order to cure this problem, we shall assume that the effects of the OPE on the

vector current two-point functions in QCD can be encoded in a new profile for the dilaton field

of the SW model. More explicitly, we assume that OPE is related to the behaviour of the dilaton

profile around the UV boundary, z = 0 of the 5D, while keeping the metric to have the AdS form

(2.1). Moreover, as we want to keep the Regge behaviour induced by the dilaton profile Φ(z), we

are led to modify the original quadratic profile of the SW dilaton by adding new terms which we

collect in a function B,

Φ(z) 7−→ Φ(z)+B(z) . (2.17)

We assume that the function B can be represented for all z by a polynomial of degree 2K (with

no constant term),

B(z) =
K

∑
k=1

b2k

2k
z2k . (2.18)

We prove in [1] then that the equation of motion (2.7) becomes

∂ 2
z fV +∂z [lnw(z)]∂z fV −Q2 fV = 0 , (2.19)

with w(z)
.
= w0(z) e−B(z) and can be decomposed into a solvable hierarchical system of differential

equations order by order.

This general solution drives to an expression for the vectorial correlator,

Q2ΠV (Q
2) = ∑

k

Pk

(

Q2

4κ2

)

ψ(k)

(

Q2

4κ2

)

, (2.20)

where, respectively, Pk are polynomials and ψ(k) is the kth derivative of the Digamma ψ function

defined as the logarithmic derivative of the Euler’s Γ function. The coefficients of Pk depend only

on κ2 and the coefficients bk of the dilaton (2.18).

This solution fulfils perfectly our two requirements (i) and (ii). Indeed, the Digamma function

and its derivatives in (2.20) have poles only at all negative integers (−n),

−q2

4κ2
=−n , (2.21)

so the usual Regge spectrum is verified,

M(n)2 = 4κ2n = σn , (2.22)

fixing κ2 = σ/4.
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On the other hand, performing the expansion at Q2 → ∞ of (2.20), we prove in [1] that we

identify

b2k =







−2κ2 k = 1

g2
5

2√
π

Γ( 1
2
+k)

Γ(k)Γ2(k+1)
〈O2k〉V k > 1

, (2.23)

in order to reproduce the OPE of the vectorial two-point function (2.13). We have also shown in [1]

that we can always see this modification of the dilatonic profile B(z) as a perturbation. Indeed, one

can introduce an artificial control parameter θ which allows a formal perturbative expansion in a

region where the range of parameters is valid. Moreover, θ allows to see explicitly the sub-leading

Regge trajectories corrections and the associated amplitude modifications.

2.2 Axial sector

In the previous section, we have presented a SW model with a deformed dilaton profile which

describes Regge theory and allows us to obtain the correct OPE of the vectorial two-point function.

The natural question is now if it is possible to do a similar construction for the axial correlator.

The problem to recover the right axial spectrum and the right axial OPE is more complicated if we

assume, as usual, that the coupling of the 5D vector and axial vector gauge field to the metric and

the dilaton is the same. Actually, under these assumptions, the form of the dilaton profile is already

fixed by the requirements of a correct OPE of the vector two-point function, with the coefficients

bk identified to the vectorial OPE coefficients (2.23). So we introduce a 5D scalar field X(x,z) in

(2.3) to reproduce the QCD patterns of chiral symmetry breaking as in [11, 12]. They showed that

by taking

X
a .
=

v(z)

2
I

a, (2.24)

the equation of motion for the Fourier transform over the 4D space of the axial field A, fA(−q2,z),

becomes

∂ 2
z fA +∂z [lnw(z)]∂z fA −Q2 fA = g2

5

(

v(z)

z

)2

fA , (2.25)

while the equation of motion for the vector field remains unchanged.

In this approach, chiral symmetry is broken by the 5D scalar field, and in particular by a

non vanishing profile v(z). The form of v(z) near the origin z ∼ 0 is dictated in the AdS/CFT

correspondence by asking the field X to be dual to the bilinear quark qq̄ operator, whose non

vanishing VEV is responsible for spontaneous χSB in QCD. In the following, we shall assume for

the dilaton profile B(z) the one obtained from the OPE coefficients of the vectorial fields and then

use a suitable form of the profile v(z) to encode the properties of the axial sector:

• The axial spectrum contains a pion pole at q2 = 0 and a Regge spectrum starting at q2 = M2
a1

with the same spacing than the vectorial spectrum.

• The axial OPE has the following expression

ΠA(Q
2) ∼

Q2→∞

Nc

24π2
ln

(

Λ2
A

Q2

)

+ 〈O2〉
1

Q2
+ 〈O4〉

1

Q4
+ 〈O6〉A

1

Q6
(2.26)
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and

〈O6〉A =−11

7
〈O6〉V . (2.27)

with the same definitions than in (2.14).

In order to satisfy the axial spectral properties, we make the following first ansatz for the

contribution due to the scalar profile in (2.25):

(

v(z)

z

)2

= β0 +β ∗zδ (z) . (2.28)

Let focus first on the Regge progression of the axial spectrum. We notice that, phenomenolog-

ically, taking the first axial pole at q2 = M2
a1
≃ 2M2

ρ ≃ 2σ is quite an acceptable approximation for

the axial spectrum. Then our prescription to obtain the axial spectrum from the vectorial one is to

perform a "shift" over the vectorial spectrum like Q2 → Q2 +4κ2. This fixes directly in (2.25)

g2
5β0 = 4κ2 = σ . (2.29)

The full axial spectrum is not yet realised, indeed, since the axial spectrum is a shifted version

of the vectorial spectrum, it does not contain yet any pion pole and moreover on the Euclidean side,

this shift implies a modifcation of the OPE as

ΠA(Q
2) ∼

Q2→∞

1

2g2
5

ln

(

4κ2e−γE

Q2

)

+
2κ2

g2
5

1

Q2
, (2.30)

where absence of dimension two operator in the axial OPE is violated.

The introduction of the Dirac delta function in (2.28) has the nice properties to cure this two

problems at the same time. This term in (2.25) generates only one exact contribution −β ∗/Q2 (for

any Q2) such that the pion pole appears naturally and modifying the OPE as

ΠA(Q
2) ∼

Q2→∞

1

2g2
5

ln

(

4κ2e−γE

Q2

)

+

(

2κ2

g2
5

−β ∗
)

1

Q2
, (2.31)

then by taking

β ∗ =
2κ2

g2
5

, (2.32)

the axial OPE properties is satisfied again.

The generation of the rest of the axial OPE terms derives exactly from the same procedure

used in the vectorial section provided that we add two other terms in the expression (2.28) such as

(

v(z)

z

)2

= β0 +β ∗zδ (z)+β2z2 +β4z4 . (2.33)

With slight modifications, the iterative method we used to obtain the corrections to the vector

two-point function, can be applied to the axial case too. All the details can be found in [1]. Then

7
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one has by identification: Λ2
A = 4κ2e−γE = Λ2

V , the coefficients β2 and β4 are fixed by matching

with QCD axial OPE (2.26) ,(2.27) :



















β2 =− 6κ4

g2
5

β4 =− 10κ2

3g2
5

−5κ2 〈O4〉+ 45
28
〈O6〉V .

(2.34)

The polynomial part of the scalar profile v(z) is

v(z) = z
√

β0 +β2z2 +β4z4

∼
z→0

2κ

g5

z− 3κ3

2g5

z3 +

(

−67κ5

48g5

− 5g5κ

4
〈O4〉+

45g5

112κ
〈O6〉V

)

z5 , (2.35)

where the first two terms, which are the leading terms near z = 0, are exactly the ones of a scalar

field dual to the bilinear quark qq̄ operator, i.e. the one required in Ref. [28] and compatible with

the approach in [34].

3. Analytic continuation in the chiral sector: the left-right correlator

We have explicitly shown how to implement the constraints on an axial and vectorial two-point

functions coming from two different regions in the q2−plane: the deep Euclidean region where we

reproduce the matching with the OPE of QCD, and the Minkowski region where the two-point

function have poles following Regge trajectories. Having built explicit expressions for ΠV and

ΠA valid on the whole complex plane we now turn to the analysis of their prediction for chiral

quantities defined at low Q2.

Since we are now interested to the chiral sector, i.e. the low Q2 expansions, it is more pertinent

to consider the ΠLR correlator,

ΠLR(Q
2) =

1

2

(

ΠV (Q
2)−ΠA(Q

2)
)

. (3.1)

which is an order parameter of the chiral symmetry breaking mechanism in QCD.

The low Q2 limit can be obtained by the analytic continuation of our expressions for the axial

and vectorial two-point function, this allows us to extract from ΠLR for instance the following chiral

constants

F2
π = 2Res

[

ΠLR

(

Q2
)

,0
]

(3.2)

L10 =
1

2

d

dQ2

[

Q2ΠLR(Q
2)
]

∣

∣

∣

∣

Q2=0

. (3.3)

From our analytic expressions for the vectorial and axial correlator, one obtains the following

analytic expressions for F2
π and L10,

F2
π =

Ncκ2
(

180ζ (3)+191−41π2
)

72π2
+

5
(

π2 −10
)

2

〈O4〉
κ2

− 45
(

π2 −10
)

56

〈O6〉V
κ4

, (3.4)

8
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using Nc = 3, κ =
√

1.43/4 GeV ≃ 0.6GeV and the values of the condensates 〈O4〉= (−0.635±
0.04) ·10−3 GeV4 and 〈O6〉V = (14±3) ·10−4 GeV6 from [5], we obtain

Fπ ≃
√

4099.9+579+1147.8 MeV ≃ 76 (±3)ext. MeV , (3.5)

the error in (3.5) are coming from the errors quoted for σ and the condensates.

The expression for L10 is

L10 =
Nc(8010ζ (3)+495−585π2 −46π4)

8640π2

+
−72ζ (3)−12+11π2

64

〈O4〉
κ4

+
5[5216ζ (3)+67−33π2 ]

1792

〈O6〉V
κ6

, (3.6)

then with the same numerical values used for the evaluation of Fπ ,

103L10 ≃−4.6−0.8+0.1 ≃−5.3(±1)ext. , (3.7)

the error in (3.7) are coming from the errors quoted for σ and the condensates 1.

The values of Fπ and L10 are quite reasonable face with our model hypothesis, if one admits

the usual 30% error coming from Large-Nc QCD limit, compared to the range of variation of Fπ in

the chiral limit, 66 < Fπ < 84 MeV, and compared to the value 103L10 =−5.3±0.13 according to

[35] and references therein.

The relative contributions to Fπ and L10 from the gluon and the quark condensates are consis-

tent with previous evaluation [36, 37].

4. Conclusions

There have been several models describing QCD properties of the two point vectorial and ax-

ial Green function. Already an interpolation among low energy chiral properties and perturbative

QCD is good [2]. The intermediate region could be phenomenologically matched with a tower of

resonance states equally spaced (à la Regge) [24, 5, 27, 7]. Indeed, there are excellent dynamical

reasons that Regge trajectories are dynamically generated. Holographic QCD gives us a funda-

mental theoretical tool with the SW model to start directly from a theory where Regge trajectories

are analytically implemented. The original model [18] had several difficulties: the absence of a

satisfying description of chiral symmetry breaking and of the axial sector, wrong OPE. For some

further attempts to cure these problems one can refer to [40, 39].

It is natural to modify opportunely the SW model to comply with the OPE. While it was done

already for the HW model [?, 37], it is a novelty for the vector correlator in the SW model: we

obtain the solution for the vector field fV profile and the analytic expression ΠV (Q
2) in eq. (2.20)

in terms of the Digamma function ψ and its derivatives. As a result, we support previous works

[24, 27, 38].

The coefficients of the polynomial of the dilaton profile (bk’s), fixed by the requirement of

a correct vectorial OPE, appear also in the differential equation (2.25) of the axial vector field

1Let us notice that if we had made the choice for σ ≃ 0.9GeV2 as in [18] the values obtained would have been

Fπ ≃ 80 MeV and 103L10 ≃−6.2 which remain quite acceptable too.
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fA, whose expression extends the analogous ones in Ref. [14, 11, 28, 12] with the presence

of a scalar field in the bulk with a non-trivial vacuum profile, v(z). A coherent, complete and

phenomenologically consistent solution emerges: due the phenomenologically observed relation

8κ2 = M2
a1 the solution for the axial in eq. (2.25) can be obtained from the vectorial one as

ΠA(Q
2) = ΠV (Q

2 + 4κ2)+ "corrections". This solution generates the pion pole, the correct ax-

ial spectrum and axial OPE, if the profile of the vacuum, v(z), is not only a polynomial but contains

also a Dirac δ -function term, i.e. a boundary term for the axial field, which is needed in order to

comply with the axial OPE.

Our analytic solution for Fπ and L10 respectively in eq. (3.4) and (3.6) are very successfully

phenomenologically and show how these parameter are linked to Regge spacing and QCD conden-

sates; compared to previous literature [24, 5, 27, 7] our results are fully analytical.
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