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isospin breaking. Three issues related to this aspect will be considered: isospin breaking due to the

pion mass difference in the phases of the form factors for theK± → π+π−e±
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νe decay amplitude,
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1. Introduction

Low-energyππ scattering remains a privileged place where we can test our understanding of
the chiral structure of the QCD vacuum. So far, there are, however, only a handful of experimental
processes that provide access to low-energyππ scattering data with the required degree of preci-
sion. Among these, one may mention the lifetime and energy levels of pionic atoms [4, 5], the decay
of the charged kaon into one charged and two neutral pions [6], andKℓ4 decays. This presentation
is devoted to the latter case, where the experimental situation has witnessed an impressive evolu-
tion in recent years. For quite some time, the high-statistics Geneva-Saclay experiment [7], with its
30000 events of theK+ → π+π−e+νe decay mode of the charged kaon, has remained unequalled.
The situation improved notably with the∼ 400000 events collected by the Experiment 865 [8, 9]
at the Brookhaven AGS about fifteen years ago. Finally, an even more spectacular number of more
than 1000000 events, with comparable statistics in both charged modes, i.e.K+ → π+π−e+νe

(roughly 2/3 of the total sample) andK− → π+π−e−ν̄e (roughly 1/3 of the total sample), was
collected and analysed by the NA48/2 Collaboration [10, 11,12] at the CERN SPS. These decay
modes will be referred to asK+−

e4 .
In addition, the NA48/2 Collaboration has also published [13] an analysis concerning a sample

of ∼ 65000 events in the mode with two neutral pions, i.e.K+ → π0π0e+νe andK− → π0π0e−ν̄e,
referred to asK00

e4 . These modes offer an interesting cross-check with theK+−
e4 modes. Indeed, in

the isospin limit, their amplitudes have one form factor in common. Measuring this form factor
independently in each mode thus allows to test our understanding of isospin-breaking effects.

Let us now briefly present the three issues to be discussed in relation with these recent experi-
mental achievements.

• A standard angular analysis of theK+−
e4 form factors [14, 15] provides information on low-

energyππ scattering (Watson’s theorem) through the phase difference between theSandP waves,
[δS(s)−δP(s)]exp. Comparison with solutions of the Roy equations [16] for these phase shifts
allows one to extract the values of theππ S-wave scattering lengthsa0

0 anda2
0 in the isospin channels

I = 0,2,

[δS(s)−δP(s)]exp= fRoy(s;a
0
0,a

2
0). (1.1)

The Roy equations follow from dispersion relations (that is, analyticity, unitarity, crossing, and the
Froissard bound), data at energies

√
s≥ 1 GeV, andisospin symmetry. Solutions fRoy(s;a0

0,a
2
0)

to these equations have been constructed for(a0
0,a

2
0) belonging to a restricted domain called the

Universal Band, see Refs. [17, 18]. Once radiative corrections have been taken care of (see below),
it is still necessary to takeisospin-breaking correctionsdue toMπ 6= Mπ0 into account (Mπ stands
for the mass of the charged pion) before comparing with the data [19]. Such a calculation has been
done at one loop in chiral perturbation theory [20], and as a result, Eq. (1.1) becomes

[δS(s)−δP(s)]exp= fRoy(s;a
0
0,a

2
0)+δ fIB(s;(a

0
0)

LO
ChPT,(a

2
0)

LO
ChPT). (1.2)

However, the correction termδ fIB(s;(a0
0)

LO
ChPT,(a

2
0)

LO
ChPT) is evaluated at fixed values of the scat-

tering lengths, given by their lowest-order values in chiral perturbation theory, i.e.(a0
0)

LO
ChPT =

7M2
π/(32πF2

π ) = 0.16 and(a2
0)

LO
ChPT=−M2

π/(16πF2
π ) =−0.045 [21]. This limitation is shared by

other studies [22, 23, 24] of isospin-breaking correctionsat one loop in the low-energy expansion.
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The crucial question is whether this situation induces a bias in the determination of the scattering
lengths from the NA48/2 data, at the level of precision that has been reached today. In order to
answer this question, one would like to obtain an expressionof the form

[δS(s)−δP(s)]exp= fRoy(s;a
0
0,a

2
0)+δ fIB(s;a

0
0,a

2
0), (1.3)

where the scattering lengths appear as free parameters, to be determined from the data, both in the
solution of the Roy equationsfRoy(s;a0

0,a
2
0) and in the correction factorδ fIB(s;a0

0,a
2
0). The first

issue to be discussed shows how this question can be answeredin a positive manner by constructing
such a functionδ fIB(s;a0

0,a
2
0) that is in addition valid at two loops in the low-energy expansion.

• The distribution with respect to the invariant mass of the two neutral pions in theK00
e4 decay

channels shows a unitarity cusp at 2Mπ , corresponding to the opening of the intermediate state
with two charged pions [25]. Like in the case of the decay modes K± → π0π0π± [26, 27], this
cusp contains information on the combinationa0

0 − a2
0 of the ππ scattering lengths. The second

issue is the question whether the phenomenological description of the cusp can impinge on the
determination of the normalization of the form factor, an issue that is relevant for the next point,
as well as the expected precision with which the informationon a0

0−a2
0 can be extracted fromK00

e4

data.
• In the isospin limit, the matrix elements forK+−

e4 andK00
e4 have a form factor in common.

This feature can be tested with the available data. Denotingby fs this form factor, its experimental
determinations fromK+−

e4 [10] and fromK00
e4 [13] give

|Vus| fs[K+−
e4 ] = 1.285±0.001stat±0.004syst±0.005ext

(1+δEM)|Vus| fs[K00
e4 ] = 1.369±0.003stat±0.006syst±0.009ext, (1.4)

respectively. This implies

(1+δEM)
fs[K00

e4 ]

fs[K
+−
e4 ]

= 1.065±0.010. (1.5)

In the case of theK+−
e4 modes, radiative corrections were taken into account. In the K00

e4 case, no
radiative corrections were applied, hence the presence of the factorδEM. This correction factor
is not available from the existing literature (the discussion in Ref. [28] is not very explicit, and
hence not useful). Besides radiative corrections, there are also isospin-breaking corrections due to
the difference between theup anddownquark massesmu andmd, conveniently described by the
parameterR, with 1/R=(md−mu)/(ms−mud), wherems is the mass of thestrangequark, whereas
mud denotes the average mass of theup anddownquarks,mud = (mu +md)/2. For instance, at
lowest order in the chiral expansion, one has [22, 29]

fs[K00
e4 ]

fs[K
+−
e4 ]

=

(

1+
3

2R

)

. (1.6)

Barring contributions of higher-order corrections, values of R as small as [30]R= 35.8(1.9)(1.8)
can account for about two thirds of the effect in Eq. (1.5). The third issue concerns thus the
evaluation ofδEM. In order to make the interpretation of Eq. (1.5) meaningful, the evaluation of
δEM should be carried out within thesameframework as used in the analysis of theK+−

e4 data.
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2. Isospin breaking in the phases of the two-loop Ke4 form factors

The goal here is to obtain a representation for theKe4 form factors: i) that is valid at two
loops in the low-energy expansion, ii) where theππ scattering lengths occur as free parameters,
and iii) with isospin-breaking effects due toMπ 6= Mπ0 included. This has been done in Ref. [2] by
adapting the approach (“reconstruction theorem") first introduced and described in Ref. [31] for the
ππ scattering amplitude, and implemented explicitly in Ref. [32]. This method rests on very gen-
eral principles, relativistic invariance, analyticity, unitarity, crossing, and chiral counting. Isospin
symmetry itself is not required. An iterative two-step construction then yields a two-loop represen-
tation for meson scattering amplitudes andKe4 form factors. As an outcome of this construct, the
phases of theS- andP-wave projections of the form factors can be expressed as

δS(s,sℓ) = ∑
{a′,b′}

1
Sa′b′

λ
1
2

a′b′(s)

s

[

ϕa′b′;+−
0 (s)

Fa′b′
S[0] +Fa′b′

S[2] (s,sℓ)

FS[0]+FS[2](s,sℓ)
+ ψa′b′;+−

0 (s)
Fa′b′

S[0]

FS[0]

]

θ(s−sa′b′)

+O(E6), (2.1)

and

δP(s,sℓ) = ∑
{a′,b′}

λ
1
2

a′b′(s)

s

λ
1
2

a′b′(s)

λ
1
2

ab(s)

[

ϕa′b′;+−
1 (s)

Ga′b′
P[0]+Ga′b′

P[2](s,sℓ)

GP[0]+GP[2](s,sℓ)
+ ψa′b′;+−

1 (s)
Ga′b′

P[0]

GP[0]

]

θ(s−sa′b′)

+O(E6). (2.2)

In these expressions, the sums run over all possible mesonictwo-particle intermediate states
{a′,b′} that can contribute whens, the square of the invariant mass of theπ+π− pair, exceeds
the threshold valuesa′b′ . Their complete list, together with the corresponding expressions for the
leading-order (in the low-energy expansion) form factorsFa′b′

S[0] andGa′b′
P[0] (note thatFS[0,2] ≡ Fπ+π−

S[0,2] ,

GP[0,2] ≡ Gπ+π−
P[0,2] ) are given in Table 2 of Ref. [2]. The phase-space factors areexpressed in terms of

the appropriate triangle or Källen functions,λab(s) = s2−2s(M2
a +M2

b)+(M2
a −M2

b)
2. In the case

of theP-wave phaseδP(s,sℓ), there can be no contribution from states with two identicalparticles
due to Bose symmetry, making the symmetry factor 1/Sa′b′ in δP(s,sℓ) superfluous. Furthermore,
ϕa′b′;+−

0 (s) andϕa′b′;+−
1 (s) denote the partial-wave projections of the lowest-order scattering ampli-

tudes for the processesa′b′ → π+π−. These are the only quantities that contribute to the phasesof
the one-loop form factors. The phases of the two-loop form factors receive corrections at the next
order in the low-energy expansion. These corrections materialize as correctionsFa′b′

S[2] and Ga′b′
P[2]

to the form factors, and as correctionsψa′b′;+−
0 (s) andψa′b′;+−

1 (s) to the partial-wave projections.
Through these corrections, the phasesδS(s,sℓ) andδP(s,sℓ) depend also onsℓ, the square of the
invariant mass of the lepton pair, as soon as a second intermediate statea′b′ 6=+− is involved. For
the description of theK+−

e4 processes,s ranges from 4M2
π to M2

K , so that only two-pion intermediate
states are relevant, i.e.{a′,b′} = {π+,π−},{π0,π0}. Due to Bose symmetry, the second possibil-
ity does not occur in theP wave, so that the dependence onsℓ occurs only in theSwave. In other
words, while Watson’s theorem does not apply to the case of the phase of theS-wave projection of
the form factors, it is still operative for theP wave in the range ofs allowed by the phase space of
theK+−

e4 decay mode. It appears that the available statistics has notallowed the NA48/2 experiment
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to identify a dependence of the phases onsℓ [11, 12]. We haver checked that, from the theoretical
side, the dependence onsℓ is indeed sufficiently small, as compared to other sources oferror. We
have therefore takensℓ = 0 in our formulas. Let us stress that the dependence onsℓ is also not
present inδS(s,sℓ) at lowest order (i.e. the case considered in Ref. [20]), where the expression for
δS reduces to

δS(s) = ∑
{a′,b′}

1
Sa′b′

λ
1
2

a′b′(s)

s
ϕa′b′;+−

0 (s)
Fa′b′

S[0]

FS[0]
θ(s−sa′b′)+O(E4). (2.3)

In the isospin limit, the dependence onsℓ also drops out fromδS(s,sℓ), and Watson’s theorem
is recovered, i.e. the phases tend towards

δS(s,sℓ)→ δ0(s), δP(s)→ δ1(s) (2.4)

whereδ0(s) andδ1(s) denote theππ phases in thel = 0, I = 0 andl = 1, I = 1 channels, respec-
tively. The quantity that is determined from experiment is the differenceδS(s,sℓ)− δP(s) and our
aim is to compute its deviation from the differenceδ0(s)−δ1(s).

Let us now come to the main point, namely the dependence on thescattering lengthsa0
0 anda2

0.
Along with the form factors describing theKe4 form factors, one also needs to construct the various
amplitudes forππ scattering. This can be done within the framework provided by the “recon-
struction theorem" of Ref. [31], even when isospin is broken[1]. In doing so, one can parameterise
these amplitudes, and thus the partial-wave projections that appear in the phasesδS(s,sℓ) andδP(s),
directly in terms of the scattering lengths. The same can be done for the phasesδ0(s) andδ1(s) in
the isospin limit. Doing this for the one-loop form factors,one obtains this way the expression

δ fIB(s;a
0
0,a

2
0) =

1
2

σ(s)

[

−2
3

a0
0+

2
3

a2
0−4a2

0
∆π

M2
π
− 1

12
(2a0

0−5a2
0)

s−4M2
π

M2
π

]

(2.5)

−1
2

σ0(s)

(

1+
3

2R

)[

−2
3

a0
0+

2
3

a2
0+a2

0
∆π
M2

π
− 1

12
(2a0

0−5a2
0)

s−4M2
π

M2
π

]

+O(E4),

whereσ(s) =
√

1−4M2
π/s, σ0(s) =

√

1−4M2
π0/s, and∆π = M2

π −M2
π0. If one replaces the scat-

tering lengths by their lowest-order values(a0
0)

LO
ChPT and(a2

0)
LO
ChPT given previously, one recovers

the result of Ref. [20]. In contrast, in the expression (2.5), the scattering lengths appear as free
parameters. It is also possible to work out [2] theO(E4) corrections to the above expression of
δ fIB(s;a0

0,a
2
0), thus obtaining an expression whose dependence on the scattering lengthsa0

0 and
a2

0 is correct up to corrections of the orderO(E8) in the low-energy expansion. Numerically, we
observe thatδ fIB(s;a0

0,a
2
0) shows significant variations with respect to the scatteringlengthsa0

0 and
a2

0, as these are varied away from the lowest-order chiral prediction, see the Figures in Section 6 of
Ref. [2].

We have redone the fit to the NA48/2 data using our determination of the correction factor
δ fIB(s;a0

0,a
2
0), obtaining

a0
0 = 0.221(18) a2

0 =−0.0453(106). (2.6)

This result compares well with the valuesa0
0 = 0.222(14) anda2

0 = −0.0432(97) obtained in Ref.
[12] with the correction factor of Ref. [20], but with slightly larger errors once the dependence
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of the isospin-breaking corrections on the scattering lengths is taken into account. Actually, the
interference between theSandP waves from theK+−

e4 angular analysis shows a strong correlation
betweena0

0 anda2
0. In order to circumvent this problem, one may supplement theNA48/2 data with

additional information. Two options have been considered:using data in theI = 2 S wave [18],
or using a theoretical constraint on the scalar radius of thepion [33]. With the first option, our fit
gives the result

a0
0 = 0.232(9) a2

0 =−0.0383(40), (2.7)

while with the second option we obtain

a0
0 = 0.226(7) a2

0 =−0.0431(19). (2.8)

We have estimated higher-order corrections (in the low-energy expansion) toδ fIB(s;a0
0,a

2
0) in var-

ious manners, and have found that they affect the results of our fits in a marginal way. For more
quantitative statements concerning this issue we refer theinterested reader to Section 7 of Ref. [2].

3. The cusp in the K00
e4 decay distribution

Two questions related to the presence of the unitarity cusp in the decay distribution of theK00
e4

decay modes were addressed in Ref. [3]. The first one aims at determining to which extent the
phenomenological parameterisations of the cusp considered in the data analysis could influence
the outcome, in particular as far as the value of the form factor fs[K00

e4 ] is concerned. The second
one is to determine the statistics that would be necessary inorder to extract the information on the
ππ scattering lengths with a certain level of accuracy fromK00

e4 data.
We have addressed both issues in the somewhat simpler situation of the scalar form factors of

the pions, for which two-loop expressions were obtained in Ref. [1]. These expressions again retain
the full dependence on the scattering lengths and on isospin-breaking effects, and thus provide a
theoretical description of the cusp (in the scalar form factor of the neutral pion) that is accurate at
that level in the low-energy expansion.

We have used these two-loop representations in order to generate pseudo data, which have
then been analysed with various phenomenological parameterisations of the form factor, inspired
by those in use for the analyses of theK+−

e4 andK00
e4 experimental data, and which do not fully agree

with the general properties that can be inferred from the exact expressions of the form factors. The
outcome of this study is that the determination of the normalization of the form factor is actually not
sensitive to the parameterisations used, and can be determined accurately (at the percent level with
a statistical sample of the size of the one collected by NA48/2). Consequently, the fit procedure
adopted in Ref. [13] does not bias the determination offs[K00

e4 ], and thus cannot explain even part
of the surprisingly higher value obtained for it by the NA48/2 collaboration as compared to the
value for fs[K+−

e4 ] determined from theK+−
e4 channel, see Eq (1.5). Although our study was carried

out for the scalar form factor of the neutral pion, we expect that the conclusion also holds for the
K00

e4 form factor. This expectation rests on the fact that the scalar andK00
e4 form factors have similar

shapes, in particular as far as the cusp is concerned.
As far as the extraction of the combinationa0

0−a2
0 is concerned, the presence of a cusp similar

to the one observed in the three-bodyK+ → π+π0π0 decay [34] suggests that it should, in prin-
ciple, be possible to extract information on the scatteringlengths from an accurate measurement
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of the K00
e4 differential decay rate. We have found that, unfortunately, with the sample of events

presently available, the statistical uncertainties remain large and the scattering lengths are only
weakly constrained. A substantial increase of the statistical sample would be required in order to
reach a precision that would become close to the precision obtained by the Dirac experiment [35].

4. Radiative corrections to the K00
e4 decay rate

Because of the smallness of the electron mass and of the limited experimental precision, the

decay of the charged kaon into two neutral pions,K± → π0π0e±
(−)

νe can be described in terms of
a single form factor. This form factor also occurs in the description of the decay into two charged

pions,K± → π+π−e±
(−)

νe, and up to isospin-breaking contributions, the two determinations should
agree. Having eliminated possible biases due to the parameterisations used in the data analysis, the
significant difference displayed in Eq. (1.5) should therefore be ascribed to radiative corrections,
i.e. to the factorδEM.

In the data analyses, radiative corrections were addresseddifferently in theK+−
e4 and K00

e4

cases. In the latter case, no radiative corrections were applied to the measured decay rate [13],
and the factorδEM was left unspecified. In theK+−

e4 case, two types of radiative corrections were
implemented. Virtual photon exchanges between all possible pairs of charged external lines were
considered, and the corresponding Sommerfeld-Gamow-Sakharov factors applied. The corrections
induced by emission of real photons were treated with PHOTOS[36, 37, 38, 39]. The latter also
implements wave-function renormalisation on the externalcharged legs. The couplings of photons
to mesons are treated as point-like interactions, given by scalar QED. The result is then free from
infrared singularities. Furthermore, contributions thatvanish when the electron mass goes to zero,
which is a sensible limit to consider for theKe4 decay channels, are neglected.

Transposing this discussion to theK00
e4 case, one notices that Sommerfeld-Gamow-Sakharov

factors are not relevant, so that only the second type of corrections effectively contributes toδEM.
In order to make the comparison with theK+−

e4 case meaningful, the evaluation ofδEM should be
done within the same framework as used there. This requires to analyse the content of PHOTOS
in some greater detail, in order to identify which corrections are included, and in which manner
they are implemented. We have done this study, and have evaluated the corresponding radiative
corrections in theK00

e4 case. The result we obtain is

δEM = 0.018. (4.1)

This correction term has the expected size. Moreover, beingpositive, it indeed reduces the discrep-
ancy in Eq. (1.5), from 6.5% to 4.6%, i.e.

fs[K00
e4 ]

fs[K
+−
e4 ]

= 1.046±0.010. (4.2)

The remaining difference can then be accounted for by the isospin breaking in the quark masses,
i.e. the value ofR. Actually, one may even take an inverted point of view and, bycombining
Eqs. (4.2) and (1.6), extractR= 32+9

−6. Of course, a more reliable statement would require one to
evaluate the corrections to the lowest-order relation (1.6), as well as a more systematic treatment
of radiative corrections in bothKe4 channels.

7
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5. Summary and conclusions

The high level of precision reached by the determination ofδS(s)− δP(s) from the data col-
lected by the NA48/2 experiment requires to consider isospin-breaking corrections. Since the ulti-
mate goal is to extract theππ scattering lengths in the isospin limit,a0

0 anda2
0, the corrections due

to the mass differenceMπ 6= Mπ0 should not be computed at fixed values of the scattering lengths,
but should be parameterised in terms of them.

General properties (analyticity, unitarity, crossing, chiral counting) provide the necessary
tools, through the reconstruction theorem, to do this in a model-independent way. The correc-
tions can be obtained in the form shown in Eq. (1.3), where in both terms on the right-hand side
the scattering lengths appear as free parameters, to be fitted to the data. Moreover, the correction
termδ fIB(s;a0

0,a
2
0) has been worked out at next-to-leading order. Using this construction, we have

redone the fit to NA48/2 data. Our results are compatible withthose published by NA48/2 within
errors.

We have also looked for possible sources of biases that couldprovide explanations for the dis-
crepancy observed between the measurements of the form factor fs in theK+−

e4 andK00
e4 channels. A

possible bias due to the use, in the data analysis, of simplified phenomenological parameterisations
of the cusp in theK00

e4 form factor, does actually not influence the determination of its normalization
at the level of precision achieved with the NA48/2 data.

We have next evaluated radiative corrections to theK00
e4 decay rate, being careful to perform

this evaluation in the same framework as used for the treatment of radiative corrections in the
K+−

e4 decay, in order to make a comparison between the two meaningful. The resulting correction
reduces the discrepancy in Eq. (1.5) from 6.5% to 4.5%. The remaining discrepancy can then be
ascribed to the differencemu−md between quark masses, given the typical values of the quark-
mass ratioR obtained by recent simulations of QCD on the lattice. A more quantitative statement
would required a more involved treatment of radiative corrections.

This brings us to our final remark. While the treatment of radiative corrections in the data
analysis might give reliable results as far as the decay rates are concerned, it might not quite do
justice to the high quality of the data that have become available for the decay distributions. The
issue of the dependence on the scattering lengths thus arises quite legitimately also in the context
of radiative corrections. Existing studies do not take thisaspect into account. We leave this as an
interesting open problem for future work.
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