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1. Introduction

The study of the internal electromagnetic structure of the nucleon has been a very active field
since decades from both, theoretical and experimental sides. Several experiments have been con-
ducted along these years with the final goal of understanding, from first principles, how the nucleon
responds under electromagnetic probes. This will lead to a better determination of the output of
experiments in which the electromagnetic response of the nucleon plays a prominent role. To the
level of precision of the experimental programs running nowadays, one usually needs to go beyond
the one photon exchange approximation. One important example is the study of the e−p scattering,
where the two photon exchange (TPE) corrections can play a fundamental role in the determination
of the proton radius [1]. These corrections have two kinds of contributions, one coming from the
form factors of the nucleon, and another generated by the polarizabilities of the nucleon. This last
one has been object of intensive study from the theory side, due to the potential that they have
to solve the so-called "Proton Radius Puzzle" [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. The po-
larizabilities are simply the moments of the electromagnetic response of the nucleon, and can be
connected to their classical definition of through the low energy expansion of an effective γγNN
Lagrangian [15, 16]. Their determination has been subject of several experimental programs in the
past [17, 18, 19, 20, 21, 22, 23, 24], and are still object of recent experimental analyses.

Since the polarizabilities encode the response of the constituents of the nucleon under elec-
tromagnetic probes, they provide an excellent test ground for quantum chromodynamics (QCD).
Unfortunately, in the energy region of interest here, QCD is not solvable through a perturbative ap-
proach, and the determination of the polarizabilities in terms of quark and gluon degrees of freedom
becomes a tough task [25]. Nevertheless, it is still possible to work within a framework embodying
the relevant symmetries of QCD at low energies, in which the degrees of freedom are not quarks
and gluons but hadrons. This framework is commonly known as chiral effective field theory (chiral
EFT), and has been very successful in explaining the structure of the nucleon on chiral symmetry
grounds.

Here we will follow the relativistic approach [26, 27], including also the ∆(1232) resonance
as a dynamical degree of freedom, to study the Q2 evolution of the lowest order scalar and spin
polarizabilities of the nucleon appearing in the double virtual Compton scattering (VVCS). Later,
we also study the impact of the improved description of these polarizabilities on the calculation of
the polarizability contribution to the muonic hydrogen Lamb shift.

2. Polarizabilities

The object of our study are the lowest-order polarizabilities entering in the description of the
forward VVCS. Traditionally, the amplitude describing this process is written in the following
non-relativistic form

T (ν ,Q2) = fL(ν ,Q2)+(~ε
′∗ ·~ε) fT (ν ,Q2)+ i~σ · (~ε ′∗×~ε)gT T (ν ,Q2)− i~σ · [(~ε ′∗−ε)× q̂]gLT (ν ,Q2)

(2.1)
where ν = (s−m2

N +Q2)/2mN and Q2 are the photon energy and virtuality, respectively, being
mN the nucleon mass, and ~q the three momentum of the photon. Notice that fL and fT encode the
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Figure 1: Diagrams computed in the evaluation of the Compton tensor. The left panel shows the diagrams
with the πN loops, while the right one shows the diagrams that involve the ∆ as intermediate state.

spin-independent response of the nucleon, while gT T and gLT contain information about the spin-
dependent one. These functions can be splitted into a Born and a non-Born part. While the Born
part is determined by the global properties of the nucleon as the mass, charge and anomalous mag-
netic moment [28, 29], the non-Born part is related to the polarizabilities. A low energy expansion
of these functions allows us to identify the polarizabilities as the coefficients of the expansions in
terms of ν and Q2

fT (ν ,Q2) = f (Born)
T (ν ,Q2)+4πQ2

βM1 +4π(αE1 +βM1)ν
2 + . . . (2.2)

fL(ν ,Q2) = f (Born)
L (ν ,Q2)+4παE1Q2 +4παLν

2Q2 + . . . (2.3)

gT T (ν ,Q2) = g(Born)
T T (ν ,Q2)+4πγ0ν

3 + . . . (2.4)

gLT (ν ,Q2) = g(Born)
LT (ν ,Q2)+4πδLT ν

2Q+ . . . (2.5)

As commented in the introduction, the approach that we use to calculate these functions is
the relativistic formulation of chiral EFT with baryons, including the ∆(1232)-resonance as an
explicit degree of freedom. This approach has provided important progress in the understanding
of fundamental hadronic reactions involving one baryon, as well as on the structure of the nucleon
[30, 31, 32, 33, 34, 35, 36]. Here we perform the calculation up to order O(p4/∆) in the δ -counting.
The diagrams inlvolved in this calculation are shown in Fig. 1. Up to this order, the calculation is a
prediction, i. e., there is no free parameter to fit. In our calculations, we also include a dipole form
factor in the magnetic γN∆ transition form factor

gM →
gM

(1+Q2/0.71)2 (2.6)

following Ref. [37]. There, it was shown that this inclusion is important in order to agree
with data on electroproduction, which is related, via dispersion relations, to the Q2 evolution of the
polarizabilities.

In Fig. 2 we show our results (blue band) for the scalar polarizabilities of the proton and
neutron. These are compared to the leading-order heavy baryon (HB) result (blue dashed line) and
the MAID model (black dotted line). We also plot the leading-order relativistic result (red line) to
show importance of the ∆(1232). In this figure, as well as in Fig. 3, the error bands (the blue ones)
are calculated using a relative Q2-dependent error δ̃ (Q2) defined as:
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δ̃ (Q2) =
1
3

(
δ

mN
+

√
Mπ

mN
+

√
Q2

m2
N

)
(2.7)

for Q < δ , and

δ̃ (Q2) =

√
Q2

δ 2 (2.8)

for Q > δ , being Mπ and m∆ the pion and ∆(1232) masses, respectively, and δ = m∆−mN .
We see in this figure that, in fact, it is very important in the Q2 dependence of the combination

αE1 + βM1, specially at low Q2. This is not surprising, since we know that this resonance plays
a very important role in βM1. On the other hand, regarding αL, we see that the leading order is
enough, in a relativistic calculation, to reproduce very well the Q2 evolution of this polarizability for
both, the proton and the neutron. Notice that this is not the case in the HB approach. Therefore, the
faster convergence of the relativistic approach makes an important difference in this polarizability.
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Figure 2: Results for the scalar polarizabilities. The red solid lines and blue bands represent, respectively,
the LO and the full result (with ∆) obtained in our calculation. The blue dashed line is the LO result in the
HB limit. The black dotted lines represents the empirical result of MAID [38]. The data points at Q2 = 0
correspond to Refs [22] and [17] (red and purple point, respectively) for the proton, and [17] for the neutron.
The data point in the left upper panel at Q2 = 0.3 GeV2 is from Ref. [18] .

In the case of the spin polarizabilities, Fig. 3, one sees that the complete result (with ∆) agrees,
in general, quite well with the MAID model and the experimental determinations. We also see the
importance of the ∆(1232) in the Q2 evolution of the forward-spin polarizability. Once this reso-
nance is included in the calculation, the relativistic approach achieves a better description than the
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infrared (red band) or heavy baryon one (out of the range of the plot). Regarding δLT one sees that
the leading order relativistic calculation already achieves a good description of this polarizability in
the range of Q2 considered. Once the ∆(1232) is included, the final result tends to the experimental
as well as to the MAID results. Notice that Ref. [34] already calculated these polarizabilities at
O(ε3) in the relativistic approach (grey band). While their result agrees with ours for δ n

LT , it is
very different for δ

p
LT . This difference can be traced back to the diagrams in which the two photons

couple to an internal delta propagator [39], which is of higher order in our counting. We expect to
study the impact of these higher oder contributions in δ

p
LT in the future. In Table 1 we summarize

the results at the real photon point, and compare them with the experimental determinations or the
MAID model results.
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Figure 3: Results for the spin polarizabilities. The red solid lines and blue bands represent, respectively, the
LO and the full result (with ∆) that we obtained. Black dotted lines represent the MAID results [38]. The
grey bands are the relativistic calculation of Ref. [34]. The blue dashed line is the O(p4) HB calculation [42];
off the scale in the upper panels. The light-red band is the IR calculation [43]. The data points for the proton
γ0 at finite Q2 are from Ref. [19] (blue dots), and at Q2 = 0 from [20] (purple square). For the neutron all
the data are from Ref. [21].

3. The Lamb shift and the Proton Radius Puzzle

These improvements in the description of the Q2 evolution of the polarizabilities have impor-
tant consequences in searches of physics beyond the standard model. To be specific, they intervene
in the extraction of the proton radius through the measurement of the Lamb shift. Although for the
normal hydrogen this contribution is negligible, it can play a relevant role in the case of muonic
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Proton Neutron
Our work Empirical Our work Empirical
Ref. [40] Ref. [40]

αE1 +βM1 15.12(82) 13.8(4) 18.30(99) 14.40(66)
(10−4 fm3) Ref. [22] Ref. [17]

αL 2.31(12) 2.32 3.21(17) 3.32
(10−4 fm5) [MAID] [MAID]

γ0 −0.93(5) −1.00(8)(12) 0.05(1) −0.005
(10−4 fm4) Ref. [20] [MAID]

δLT 1.35(7) 1.34 2.20(12) 2.03
(10−4 fm4) [MAID] [MAID]

Table 1: Predictions for the forward VVCS polarizabilities at the real photon point compared with the
available empirical information. Where [MAID] is shown, the empirical number is provided by the MAID
analysis [41, 38].

hydrogen (µH), since the muon is much closer to the proton in this case, and it is much more
sensitive to its internal structure. In fact, the particular features of the polarizabilities contribution
to the Lamb shift make it a suitable candidate to solve the so-called "Proton Radius Puzzle". This
puzzle emerges from the discrepancy between the Lamb shift measured in µH and the expected
value based on the proton radius reported by CODATA in 2010 [44],

∆Eexp
2P−2S−∆Eth

2P−2S(r
CODATA
E ) = 310 µeV (3.1)

which has a statistical significance of about 7σ . This difference has been attributed to a
mismatch between the radius deduced in the µH Lamb shift measurements compared to both,
the electron-proton scattering and normal hydrogen Lamb shift determinations. However, it is
important to stress that recent extractions of the proton radius from modern measurements of
electron-proton scattering [45] using physically constrained form factors (that incorporate analyti-
city, causality and crossing symmetry) reconcile the electron-proton scattering and the µH Lamb
shift determination of the proton radius [46, 47, 48], reducing the discrepancy to 4σ .

One possible missing (or underestimated) piece of information could come from the polar-
izabilities of the proton. In Fig. 4 we show the two-photon exchange corrections to which the
polarizabilities contribute.

The polarizabilities contribution starts at O(α5
em). At this order, one can consider forward

kinematics for the Compton subprocess, since off-forward contributions are suppressed by αem.
This allows us to use the results of the previous section to compute the leading-order prediction of
the polarizabilities contribution to the µH Lamb shift. It is simple to show that the effect of this
correction to the Lamb shift can be well approximated by (see Ref. [11])

∆E pol
2S ≈

αem

π
φ

2
n=2

∫
∞

0

dQ
Q2 w(

Q2

4m2
`

)
[
T (NB)

1 (0,Q2)−T (NB)
2 (0,Q2)

]
, w(x) =

√
1+ x−

√
x, (3.2)
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Figure 4: Two photon exchange corrections to the µH. The T µν symbolizes the Compton tensor.

Marty- Nevado & Carlson & Birse & Gorchtein This Peset
Pachucki nenko Pineda Vanderhaeghen McGovern et al. work & Pineda

(µeV) [4] [5] [6] [7] [9] [10] [11] [12]

∆E(pol)
2S −12(2) −11.5 −18.5 −7.4(2.4) −8.5(1.1) −15.3(5.6) −8.2(+1.2

−2.5) −26.5

Table 2: Summary of the different determinations of the polarizability correction to the µH Lamb shift.

where φn=2 is the wave function of the µH at the origin, m` is the mass of the lepton (muon),
and T (NB)

1 and T (NB)
2 stand for the non-Born part of T1 and T2, defined from the spin-independent

part of the Compton tensor in the following way

T µν(P,q) =
(
−gµν +

qµqν

q2

)
T1(ν ,Q2)+

1
M2

N

(
Pµ − P ·q

q2 qµ

)(
Pν − p ·q

q2 qν

)
T2(ν ,Q2). (3.3)

Even though this integral extends to regions of Q2 to which chiral EFT is not applicable, it is
important to notice that, for high Q2, the contribution of T1 and T2 is suppressed by the weighting
function w(τ`). In fact, in Ref. [11] it was proved that this integral converges quickly to its asymp-
totic value (i. e., when the upper limit Q2

max = ∞) in the low Q2 region when using the relativistic
approach. However, this is not the case for the heavy baryon formulation, that exhibits a much
slower convergence. This is shown in Fig. 5 by plotting the relativistic and HB results as a func-
tion of Q2

max. While at Q2 ∼ 0.2 GeV2 already the relativistic approach gives a result compatible,
within the expected systematic error, with the asymptotic value, the HB one does not, even at large
Q2 (∼ 1 GeV2).

In Table 2 we summarize the results for ∆E(pol)
2S available in the literature. Most of them are

based on dispersive approaches, that employ experimental information. Only [6], [11], [12] are chi-
ral predictions. Among them, only the relativistic approach gives a result, ∆E(pol)

2S =−8.2(+1.2
−2.5) µeV

[11], compatible with the preferred value nowadays, ∆E(pol)
2S =−8.5(1.1) µeV [7, 9]. Although this

contribution is one order of magnitude smaller than required to explain the Proton Radius Puzzle,
this beautiful agreement between the chiral prediction and phenomenological extractions helps in
establishing the size and uncertainty of ∆E(pol)

2S on EFT grounds.
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Figure 5: Result of the integral in Eq. (3.2) as a function of its upper limit, Q2
max.

4. Summary and conclusions

We have shown that a relativistic formulation of chiral EFT for baryons with ∆ degrees of
freedom achieves a better description of the lowest order scalar and spin polarizabilities of the
nucleon at low Q2. These improvements are important in order to understand the properties of the
nucleon on QCD grounds, as well as for experimental investigations of the spin structure of the
nucleon [49]. Our better knowledge of the electromagnetic response of the nucleon is also relevant
in experimental searches of physics beyond the standard model in the low-energy frontier. Here
we have shown how the Compton tensor calculated to extract the polarizabilities, also leads to a
value of ∆E(pol)

2S that turns out to be in excellent agreement with the phenomenological extractions
[7, 9], that are mostly based on experimental information. This agreement helps to establish the
contribution of ∆E(pol)

2S to the measurement of the proton radius on chiral symmetry grounds.
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