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We present an extension of the one-nucleon sector of baryon chiral perturbation theory beyond
the low-energy region. Applicability of the proposed approach for higher energies is restricted to
small scattering angles, i.e. the kinematical region where the quark structure of hadrons cannot be
resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new
power counting and for loop diagrams exploit the freedom of the choice of the renormalization
condition. We generalize the extended on-mass-shell scheme for the one-nucleon sector of the
baryon chiral perturbation theory by choosing a sliding scale, i.e. expand the physical amplitudes
around kinematical points far beyond the threshold. This requires an introduction of complex-
valued renormalized coupling constants which can be either extracted from experimental data,
or calculated using the renormalization group evolution of coupling constants fixed in threshold
region.
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The main idea of Effective field theories (EFTs) of the strong interaction, started with Ref. [1],
is that by considering the most general effective Lagrangian of the relevant light degrees of free-
dom, which is invariant under all symmetries of quantum chromodynamics (QCD), one can repro-
duce the low-energy structure of the S-matrix of QCD. Contributions of heavy degrees of freedom
are represented by a systematic expansion of the effective Lagrangian in powers of quark masses
and derivatives acting on fields. The Goldstone-boson sector of chiral EFT, called chiral pertur-
bation theory (ChPT) [2], turned out to be very successful. The inclusion of nucleons in this
framework encountered problems due to the non-vanishing nucleon mass in the chiral limit[3].
The encountered problem of power counting in baryon ChPT (BChPT) has first been resolved by
applying the heavy baryon approach [4, 5, 6]. Later it has been observed that the power count-
ing violating parts of loop diagrams in manifestly Lorentz invariant formulations of BChPT are
polynomial in quark masses and external momenta and can be subtracted systematically by renor-
malizing the parameters of the effective Lagrangian [7, 8, 9, 10, 11, 12]. For more details see, e.g.,
Refs. [13, 14].

Here we present an extention of the applicability of BChPT beyond the low-energy region for
small scattering angles (for more details see Ref. [15]). This is achieved by re-arranging the chirally
invariant terms of the standard low-energy effective Lagrangian and by introducing a generalization
of the extended on-mass-shell (EOMS) scheme of Refs. [10, 11, 12]. We obtain an EFT with new
well-defined power counting rules. Loop diagrams contributing to physical amplitudes violate this
power counting. However, the divergent parts as well as power counting violating pieces can be
subtracted by applying a generalization of the EOMS scheme. The subtracted terms are absorbed
in the redefinition of parameters of the re-arranged effective Lagrangian. As the subtractions are
made above the threshold, the corresponding counter terms contain imaginary parts. This means
that the renormalized parameters become complex. Thus, the suggested modification of the EOMS
scheme belongs to the class of complex mass schemes (CMS) first considered in Refs. [16, 17].
One might be concerned about unitarity within the CMS because of the use of complex renormal-
ized parameters, however, this issue has been discussed in detail recently in Ref. [18] (see also
Ref. [19]).

Calculations are perturbative in the one-nucleon sector of BChPT within the new approach,
i.e. we obtain a finite number of diagrams at any finite order. However this framework can be ap-
plied only close to the forward direction, where the quark structure of hadrons cannot be resolved.
The branch points and cuts of the S-matrix of QCD are generated by loop diagrams in the EFT
framework. On the other hand, the poles in the S-matrix require the inclusion of the correspond-
ing fields as explicit degrees of freedom in the effective Lagrangian or performing some kinds of
non-perturbative resummations. That is, all resonances which appear in the considered region of
energies must be included as dynamical degrees of freedom in the effective Lagrangian.

1. Re-arranging tree-order diagrams and the effective Lagrangian

We consider the process πa(q)N(p)→ πa′(q′)N(p′) in isospin-symmetric limit, where a and
a′ are Cartesian isospin indices. We parameterize the pion-nucleon scattering amplitude as [22]

Taa′ = δaa′T++
1
2
[τa,τa′ ]T−,
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T± = ū(p′,σ ′)
[

D±(t,ν)− 1
4mN

[q′/,q/ ]B±(t,ν)
]

u(p,σ) . (1.1)

In BChPT it is convenient to work with the D and B amplitudes as functions of t and ν , where
ν = (s− u)/(4mN), and the Mandelstam variables are given by s = (p+ q)2 = (p′+ q′)2, t =
(q−q′)2 = (p− p′)2, and u= (p−q′)2 = (p′−q)2. They satisfy the identity s+t+u= 2m2

N +2M2
π

with mN and Mπ the physical masses of the nucleon and the pion, respectively.
The amplitudes X ∈ {D+, D−/ν , B+/ν , B−} are even functions of ν and the difference be-

tween the full pion-nucleon scattering amplitude and the pseudovector Born term can be expanded
around the point ν = t = 0 [22, 23] (subthreshold expansion)

X(ν , t) = Xpv(ν , t)+
∞

∑
i, j=0

xi jν
2 it j, (1.2)

where Xpv(ν , t) are the pseudovector Born terms and x ∈ {d+, d−, b+, b−}.
The one-particle irreducible tree order contributions to the amplitudes can be parameterized as

D+ = d+
0 (t,M)+d+

2 (t,M)ν2 +d+
4 (t,M)ν4 + · · · ,

D− = d−1 (t,M)ν +d−3 (t,M)ν3 + · · · ,
B+ = b+1 (t,M)ν +b+3 (t,M)ν3 + · · · ,
B− = b−0 (t,M)+b−2 (t,M)ν2 + · · · , (1.3)

where d±j (t,M) and b±j (t,M) are Taylor series in t and M - the leading order (LO) term in the chiral
expansion of the pion mass. Various contributions to the amplitudes at low energies are organized
according to the power counting assigning order q2 to t, q1 to ν and order q1 to M, where q denotes
a small quantity. The amplitudes of Eq. (1.3) are generated by the low-energy effective Lagrangian
of corresponding orders. Terms of the effective Lagrangian generating (leading) tree diagrams of
order qN are assigned order N.

For the purposes of the presented extention of BChPT we re-expand the amplitudes of Eq. (1.3)
at ν2 = µ2 as follows

D+ = d+
0 (t,M)+ν

2 [d̃+
2 (t,M)+ d̃+

4 (t,M)(ν2−µ
2)+ · · ·

]
,

D− = d−1 (t,M)ν +ν
3 [d̃−3 (t,M)+ d̃−5 (t,M)(ν2−µ

2)+ · · ·
]
,

B+ = ν
[
b̃+1 (t,M)+b+3 (t,M)(ν2−µ

2)+ · · ·
]
,

B− = b̃−0 (t,M)+ b̃−2 (t,M)(ν2−µ
2)+ · · · . (1.4)

Note here that the special treatment of D+ is caused by the fact that d+
00 = 0, i.e. we keep at each or-

der the property that D+ = 0 for t =M = ν = 0. Analogously, the fixed value d−00 = 1/(2F2), where
F is the pion decay constant in that limit, causes the special treatment of D−. The series of Eq. (1.4)
can be generated by an effective Lagrangian with the same structures as contained in the standard
effective Lagrangian, however, where the terms are re-arranged according to new power counting.
In particular, considering Q as a new small parameter, we count t ∼ Q2, M ∼ Q, and ν2−µ2 ∼ Q.
In the Taylor series of d̃±i (t,M) and b̃±i (t,M) we keep a finite number of terms, corresponding to
the given specified order of accuracy. We assign order N to those terms of the re-arranged effec-
tive Lagrangian, i.e. combinations of the chirally invariant structures, which generate contributions
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of order QN at tree level. At any finite order the re-arranged effective Lagrangian contains a fi-
nite number of chirally invariant structures, identical with those of the standard Lagrangian. In
particular, each chirally invariant term of the low-energy effective Lagrangian is split into an in-
finite number of contributions in an infinite number of terms of the re-arranged Lagrangian. The
sum of the coefficients of all these infinite number of contributions of the same chirally invariant
structure (in terms of growing orders of the re-arranged effective Lagrangian) has to reproduce
the coefficient of the corresponding term in the low-energy effective Lagrangian, at least formally.
Note here that if one is comparing the low-energy effective Lagrangian without resonances to the
re-arranged effective Lagrangian with resonances included as dynamical degrees of freedom, then
one needs to remember that low-energy couplings also get contributions from resonances when
they are integrated out.

To be more specific, the lowest order terms in D+ are proportional to ν2, M2 or t, and hence
are of order Q0, Q2 and Q2, respectively. Therefore, terms of the low-energy effective Lagrangian
of order q2+2i giving contributions to D+ proportional to ν2+2i, count as order Qi. Terms of order
q2i+2 j+2k which give contributions proportional to ν2i(M2) jtk ( j+k 6= 0) count as of order Qi+2 j+2k.
Here and below by the order of a given structure is meant the lowest order, to which it contributes.

The LO term in D− is generated by the covariant derivative part of the standard LO low-energy
pion-nucleon Lagrangian L

(1)
πN [3], which cannot be re-arranged because it generates the undressed

propagator of the nucleon. The first subleading terms are proportional to ν3, νM2 and νt which
are of order Q0, Q2 and Q2, respectively. Therefore, terms of the low-energy effective Lagrangian
of order q3+2i, giving contributions to D− proportional to ν3+2i, count as order Qi. Terms of order
q1+2i+2 j+2k giving contributions proportional to ν1+2i(M2) jtk ( j+ k 6= 0) count as order Qi+2 j+2k.

The lowest order terms in B+ are of order Q0, proportional to ν . Therefore, terms of the low-
energy effective Lagrangian of order q3+2i, giving contributions to B+ proportional to ν1+2i, count
as order Q1+i. Terms of the order q3+2i+2 j+2k giving contributions proportional to ν1+2i(M2) jtk

( j+k 6= 0) count as order Q1+i+2 j+2k. Note here that the amplitudes B± are multiplied with [q′/,q/ ],
which gives two additional orders of the small parameter q in low-energy region and one addi-
tional order of Q in the higher-energy region. We assign Q1 to the factor [q′/,q/ ] according to its
contribution to the cross section in the energy region beyond the threshold.

The lowest order terms in B− are of order Q0, proportional to ν0. Therefore, terms of the low-
energy effective Lagrangian of order q2+2i, giving contributions to B− proportional to ν2i, count
as order Q1+i. Terms of order q2+2i+2 j+2k, giving contributions to B− proportional to ν2i(M2) jtk

( j+ k 6= 0) count as order Q1+i+2 j+2k.
To practically construct the Nth order re-arranged Lagrangian using the above power count-

ing for tree-order contributions, first we need to examine all structures of the standard BChPT
Lagrangian up to (including) order 2(N + 1)+ 1 and determine their orders for the higher energy
region according to their contributions in the tree-order amplitudes. Next, we need to re-arrange
the structures of the low-energy effective Lagrangian in such a way that power series expansions in
terms of ν2− µ2 appear in tree-order amplitudes. The kth order re-arranged effective Lagrangian
we denote by L̃

(k)
πN .

The tree diagrams contributing to the πN scattering amplitudes at q3 order are shown in Fig. 1.
Below we specify explicitly the amplitudes corresponding to one-particle irreducible tree-order
diagrams which are generated by the standard low-energy effective Lagrangian up-to-including the
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third order [20, 21]. For the purpose of the re-arranged theory we also include one forth-order and
one fifth-order terms:

D+
tree =

16c2 m2
N ν2

8F2m2 − 4c1M2

F2 +
c3(2M2

π − t)
F2 +

16e16 ν4

F2 + · · · ,

D−tree =
ν

2F2 +
4d3ν3

F2 +
2ν
[
2M2

π(2d5 +d1 +d2)− (d1 +d2)t
]

F2 +
fxν5

F2 + · · · ,

B+
tree =

4(d14−d15)mN ν

F2 + · · · ,

B−tree =
1

2F2 +
2c4mN

F2 + · · · . (1.5)

Here, m and F are the nucleon mass and pion decay constant in the chiral limit, respectively, and
the ci, di and ei are the low-energy constants of the standard effective Lagrangian [21] and fx is a
linear combination of coupling constants of the fifth-order effective Lagrangian.

Below we show the new tree-order expressions obtained by re-arranging these terms. Con-
tributions of different orders are put in square brackets and the corresponding orders of the small
parameter Q are indicated as subscripts:

D+
tree =

[
16 c̃2 ν2

8F2

]
0
+

[
16 ẽ16 ν2(ν2−µ2)

8F2

]
1
+ · · · ,

D−tree =

[
ν

2F2 +
4d̃3ν3

F2

]
0
+

[
f̃xν3(ν2−µ2)

F2

]
1
+ · · · ,

B+
tree =

[
4
(
d̃14− d̃15

)
mν

F2

]
0

+ · · · ,

B−tree =

[
1

2F2 +
2c̃4mN

F2

]
0
+ · · · , (1.6)

where we kept only zeroth order terms in the B± amplitudes because of the order Q1 prefactor
[q′/,q/ ]. The new parameters c̃i, d̃i and ẽi depend on µ and they are related to the original low-energy
constants.

The LO re-arranged effective Lagrangian of the one-nucleon sector generating the leading
zeroth order terms in the expansion of D±tree in Eq. (1.6) reads:

L̃
(0)

πN = Ψ̄

(
iγµDµ −m+

1
2

gAγµuµ
γ5

)
Ψ− c̃2

4m2 〈uµuν〉Ψ̄(DµDν +h.c.)Ψ

+
d̃3

12m3 Ψ̄

{[
uµ , [Dν ,uλ ]

](
DµDνDλ + sym.

)
+h.c.

}
Ψ . (1.7)

Here, Ψ denotes the nucleon field, DµΨ = (∂µ +Γµ)Ψ is the covariant derivative and

u2 =U, uµ = iu†
∂µUu†, Γµ =

1
2
[u†,∂µu] , (1.8)

where U is a unimodular unitary (2×2) matrix of the Goldstone boson fields.

5
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2. Renormalization of loop diagrams

To renormalize loop diagrams, we generalise the EOMS scheme by moving the normaliza-
tion point away from the threshold to larger values of the energy. This corresponds to taking the
forward-scattering amplitude at some fixed energy in the chiral limit as an input and calculating
the expansion around it. Doing so we obtain the complex renormalized parameters of the effective
Lagrangian. The power counting of the previous section is also applicable to loop diagrams, pro-
vided that the renormalization point is chosen close to the considered energy region. However, the
rules of power counting are more complicated for higher energy regions. The orders assigned to
the effective Lagrangian cannot be directly translated into the rules for loop diagrams within the
new power counting. In particular, to vertices generated by the re-arranged effective Lagrangian we
need to assign their corresponding orders according to q-counting. Next we draw all loop diagrams
with these vertices and recalculate the orders of loop diagrams obtained using q-counting (i.e. for
low energy region) to those of Q-counting (i.e. of high energy region) analogously to tree-order di-
agrams. This way all loop diagrams are assigned definite orders of a small parameter Q. Equipped
with these power counting rules we identify those diagrams which have to be included at given
order of accuracy.

Un-renormalized loop diagrams violate the power counting. However, all power counting vio-
lating parts are polynomial in external momenta and the quark mass and therefore can be absorbed
in the redefinition of the parameters of the effective Lagrangian. To demonstrate the EOMS scheme
with a sliding scale we consider a simple one-loop integral:

B0(p2,M2,m2) =
(2π)4−nµ

4−n
d

iπ2

∫ dnk
[k2−M2 + iδ ] [(p+ k)2−m2 + iδ ]

, (2.1)

where n is the number of space-time dimensions and µd is the scale of dimensional regularization.
The integral B0(p2,M2,m2) is of order q1 according to the power counting rules. By subtracting
the integral at p2 = µ2

p this power counting can be satisfied. Note that by µ2
p = m2 + 2mµ the

subtraction point µp is related to µ – the subtraction point used later in section 3, provided that p2

is identified with the Mandelstam s of pion-nucleon scattering. Calculating the subtraction terms
we obtain:

BST
0 =−32π

2
λ̄ −2ln

m
µd

+1+

(
µ2

p

m2 −1

)[
ln

(
µ2

p

m2 −1

)
− iπ

]
, (2.2)

where

λ̄ =
µ

4−n
d

16π2

{
1

n−4
− 1

2
[
ln(4π)+Γ

′(1)+1
]}

. (2.3)

The subtracted integral BR
0 = B0−BST

0 is of order O(q) if p2 ∼ µ2
p ∼ m2, and it is of order O(Q) if

p2 ∼ µ2
p � m2. This can be easily seen by expanding BR

0 in M and p2−µ2
p.

3. Application to pion-nucleon scattering at leading one-loop order

We have applied the EOMS scheme with sliding scale in the low-energy region of πN scatter-
ing at order q3 and compared the results with those of the EOMS scheme. We choose the subtrac-
tion scale µ as a small quantity for low energies and therefore the standard q counting applies for

6
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a) b) c)

d) e) f)

Figure 1: Tree diagrams contributing to the pion-nucleon scattering at order O(q3). The solid and dashed
lines correspond to the nucleon and the pion, respectively. Crossed diagrams are not shown. Different
interaction vertices correspond to different orders.

tree as well as for loop diagrams. The relative values of contributions of different diagrams change
for larger values of µ – some of them become more important than others and the new Q-counting
applies. According to the above specified rules of Q-counting, the loop diagrams of order q3 start
contributing at order Q0 and Loop diagrams of order q4 – at order Q1. That is, the calculation of
this section corresponds to the full Q0 calculation of diagrams involving only pions and nucleons
if considered at higher energies (and hence for large values of µ). For phenomenological applica-
tions in the energy region where resonances contribute it is necessary to include them as dynamical
degrees of freedom in the effective Lagrangian. For example, for πN elastic scattering up to 1.6
GeV, in the P33 partial wave we need to include the ∆(1232) and the ∆(1600) as explicit degrees of
freedom.

The lowest-order pion-nucleon Lagrangian, generating the nucleon propagator and vertices
contributing in loop diagrams at q3 order, is given by [3]

L
(1)

πN = Ψ̄

(
iγµDµ −m+

1
2

gAγµuµ
γ5

)
Ψ , (3.1)

and the lowest-order O(q2) effective mesonic Lagrangian reads [2]

L2 =
F2

4
Tr(∂µU∂

µU†)+
F2M2

4
Tr(U† +U) . (3.2)

The pion-nucleon Lagrangian of second and third orders, needed for our tree diagrams, are specified
in Refs. [20, 21]. Figures 1 and 2 contain tree and loop diagrams (respectively), contributing to the
pion-nucleon scattering at q3 order. We calculated all tree and loop diagrams and subtracted the
power counting violating terms from the last. We obtained the subtraction terms by expanding
the D± amplitudes generated by the loop diagrams in powers of M, t and ν2− µ2 up to order
q2, where we counted M as order q1 and t and ν2− µ2 as order q2. The B± are multiplied by
[q′/,q/ ], which counts as order q2, therefore we only need to subtract the terms of zeroth order from
them. We checked that all subtraction terms are absorbed by redefining the corresponding coupling
constants of the effective Lagrangian. While the subtraction terms are complex for µ 6= 0, we
checked that in the µ→ 0 limit we reprodce the real-valued subtraction terms of the EOMS scheme
[24, 25]. Further, following the strategies of Refs. [24, 25], we determined all the involved coupling
constants for µ = 0 by fitting to the phase shifts of the GWU/SAID group [26] and obtained results

7
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very similar to those of Refs. [24, 25]. To obtain the coupling constants for µ 6= 0 we used the
renormalization group equations with respect to µ .

a) b) c) d)

e) f) g) h)

i) k) l) m)

n) o) p) r)

s) t) u) v)

Figure 2: Loop diagrams contributing to the pion-nucleon scattering at order O(q3). The solid and dashed
lines correspond to the nucleon and the pion, respectively. Crossed diagrams are not shown.

To carry out the renormalization the bare parameters of the effective Lagrangian are expressed
in terms of renormalized ones thus generating the main interaction terms and counterterms. We
fix these counterterms once, by adjusting them to subtraction terms of the pion-nucleon scattering
amplitudes. The same terms of the effective Lagrangian contribute to other processes and hence
the same renormalized couplings and counterterms appear. Clearly, it is guaranteed that such an
approach respects all underlying symmetries encoded in the effective Lagrangian. We cannot give
a general proof that the same counterterms also remove the power counting violating terms from
loop diagrams contributing to various related processes, however we expect that this is the case. In
any case, as the Ward identities derived from symmetries of the effective Lagrangian are satisfied
order-by-order of the expansion around any kinematical point, with certain care by performing
subtractions of loop diagrams, it should be possible to respect the symmetries.

4. Conclusions

In this contribution we briefly introduced a new approach to BChPT which is applicable for

8
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processes in the one-nucleon sector at small scattering angles at energies beyond the low-energy
regions. Despite the higher energies, the quark structure of hadrons is still not resolved in this
kinematical region. For the energies beyond the threshold region contributions of tree-order dia-
grams have to be re-ordered. This is can be achieved in a systematic and self-consistent way by re-
arranging the chirally invariant terms of the standard low-energy effective Lagrangian. Resonances,
corresponding to the poles of the S-matrix in the considered energy region have to be included as
explicit degrees of freedom in the effective Lagrangian. Effective field theoretical approach based
on such an effective Lagrangian possesses a well defined power counting for tree diagrams. To
be able to apply the same power counting also for loop diagrams, we generalised EOMS scheme
by using the subtraction at sliding scale. Within this scheme we shifted the renormalization point
in the physical region beyond the threshold. The resulting renormalized loop diagrams satisfy a
systematic power counting in the neighbourhood of the subtraction point, provided that small scat-
tering angles are considered. However by choosing the renormalization point in the physical region
we subtract also the imaginary parts of loop diagrams. This leads to complex renormalized cou-
plings and complex counterterms. Finally we are left with a systematic effective field theoretical
approach with a well defined power counting. To achieve a finite accuracy for physical quantities
a finite number of tree and loop Feynman diagrams have to be calculated within the considered
approach. The suggested framework can also be applied to the pion photo- and electro-production
processes as well as Compton scattering and processes involving several pions and/or photons for
special kinematics.
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