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1. Introduction

In recent years there have been many studies related to the application of the methods of

effective field theory to the nucleon-nucleon interaction. The nucleon-nucleon system is quite

different from the pure pionic sector or even the one-nucleon sector where the framework of chiral

perturbation theory (ChPT) have been successfully applied (see e.g. [1]). In particular, a purely

perturbative treatment in the physical near-threshold region of the nucleon-nucleon scattering is

impossible, as follows from the existence of the deuteron bound state. Formally one can try to

argue in favour of the non-perturbative nature of the nucleon-nucleon interaction by considering

naive dimensional power counting for Feynman diagrams, and organizing the expansion in terms

of the small parameter Q given roughly by the ratio of the soft scale (pion mass or the nucleon

momentum) and the hard scale (nucleon mass or the ρ-meson mass) starting with leading order

Q0, next-to-leading order Q1, etc. The leading contribution of order Q0 to the nucleon-nucleon

scattering amplitude are generated by the leading contact interaction and the one-pion-exchange

graph (see Fig.1 (a), (b)). The loop diagrams that are 2-nucleon irreducible start to contribute at

order Q2 (Fig.1 (f), (g), (h)). Nucleon-nucleon subleading contact interactions appear at the same

order (Fig.1 (i)). On the other hand the 2-nucleon reducible 1-loop diagrams (Fig.1 (c), (d), (e))

are enhanced due to the so-called pinch singularity originating from the integration region where

both intermediate nucleons are on-shell [2]. An analogous enhancement takes place for multiloop

2-nucleon reducible diagrams. Nevertheless the perturbative series could still converge as follows

from the power counting arguments since there are always a finite number of diagrams contributing

at each order. However this does not happen numerically in the real world for low partial waves as

was already mentioned above. For higher partial waves the perturbative expansion seems to work

reasonably well [3].

(a) (b)

(c) (d) (e)

(f) (g) (h) (i)

Figure 1: Tree and one-loop diagrams contributing to the nucleon-nucleon scattering amplitude at chiral

orders Q0 ((a), (b)), Q1 ((c), (d), (e)), Q2 ((f), (g), (h), (i)) according to naive dimensional power counting.

There are several schemes that implement the non-perturbative dynamics of the nucleon-
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nucleon interaction based on the chiral Lagrangian. The most popular scheme originally proposed

by Weinberg [2] is the potential approach. In this scheme one resums all 2-nucleon reducible di-

agrams by solving the Lippmann-Schwinger-type equation and applies a power counting to the

potential that consists of all possible 2-nucleon irreducible contributions (see e.g. [4, 5]). In a

different approach of Kaplan, Savage and Wise [6] only the leading order contact interaction is

resummed whereas pions are treated perturbatively. This scheme, however, was shown not to con-

verge for some of the channels [7].

The basic principle of effective field theory is to calculate the most general S-matrix consistent

with analyticity, unitarity and symmetries of the underlying theory by means of the most general

effective Lagrangian [8]. In the case of a strict ChPT unitarity is satisfied only perturbatively. In the

case of the non-perturbative nucleon-nucleon interaction it is not obvious that already mentioned

standard methods obey this basic principle. In order to understand this issue better we start directly

with the principles of analyticity and unitarity using dispersion relations but, nevertheless, per-

forming a matching to the ChPT Lagrangian using techniques developed and successfully applied

in Refs. [9, 10, 11, 12].

2. Making use of analyticity and unitarity

Analyticity and s-channel unitarity (relevant in the physical threshold region) allow one to

write down the discontinuity of a partial wave amplitude along the right-hand cut (neglecting in-

elastic channels) in the form

1

2 i
(T (s+ iε)−T(s− iε)) = T (s+ iε)ρ (JP)(s)T (s− iε) , (2.1)

where T (s) and ρ(s) are the scattering amplitude and the phase space factor respectively (they turn

into 2× 2 matrices for the coupled partial waves). This equation can be rewritten in the integral

form as a partial wave dispersion relation with one subtraction at s = µ2
M

T (s) =U(s)+

∫ ∞

4m2
N

ds′

π

s−µ2
M

s′−µ2
M

T (s)ρ(s′)T ∗(s′)

s′− s− iε
. (2.2)

Here U(s) is the generalized potential, i.e. the part of the amplitude containing only the left-hand

singularities. If the quantity U(s) is known along the whole right-hand cut the equation (2.2) can

be solved by means of the N/D method [13]. The scattering amplitude T (s) is represented as

T (s) = D−1(s)N(s) , (2.3)

where D(s) has no singularities but the right-hand s-channel unitarity cut whereas the branch points

of N(s) correspond to those of U(s). The non-linear equation (2.2) reduces to a system of linear

equations for N(s) and D(s)

N(s) = U(s)+
∫ ∞

4m2
N

ds′

π

s−µ2
M

s′−µ2
M

N(s′)ρ(s′) [U(s′)−U(s)]

s′− s
,

D(s) = 1−

∫ ∞

4m2
N

ds′

π

s−µ2
M

s′−µ2
M

N(s′)ρ(s′)

s′− s
. (2.4)

Note that an alternative technique based on the integration along the left-hand cut was utilized in

Refs. [14, 15, 16, 17].
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3. Matching to the chiral Lagrangian

A key ingredient of our work that allows us to draw a connection to the chiral effective La-

grangian is an assumption that the perturbative expansion of the nucleon-nucleon amplitude (dis-

cussed in Introduction) converges in the subthreshold region far away from the s-channel unitarity

cut and from the part of the left-hand t-channel cut that corresponds to high momenta of the ex-

changed pions. The reasonableness of this assumption was nicely illustrated by the example of a

toy model in Ref. [18]. The validity of perturbative expansion in the subthreshold region enables

us to chose the subtraction point µ2
M in Eq. (2.2) sufficiently below threshold (our typical choice is

µ2
M = 4m2

N −2M2
π) where the amplitude can be calculated from chiral Lagrangian using ChPT and

can be matched to the non-perturbative solution of Eq. (2.2).

In the system of equations (2.4) one needs to know the function U(s) along the whole right-

hand cut. In order to reliably extrapolate U(s) into the physical region we split U(s) into two

parts

U(s) =Uinside(s)+Uoutside(s), (3.1)

where Uinside(s) (in the notation of Ref. [9]) contains the closest part of the t-channel cut

Uinside(s) =

∫ 4m2
N−M2

π

Λ2

ds′

π

∆T (s′)

s′− s
. (3.2)

The discontinuity ∆T(s) in this region is also calculated in chiral perturbation theory and the lower

limit of the integral is chosen to be Λ2 = 4m2
N − 9M2

π (the three-pion-exchange threshold). Note

that we use a covariant (relativistic) version of the ChPT for the nucleon-nucleon amplitude (see

e.g. [19, 20]) in order not to destroy analytic properties of the amplitudes in the vicinity of the

t-channel cut.

The remaining part of U(s), Uoutside(s), is a smooth function of energy and can be analytically

continued into the physical region by means of the conformal mapping technique [12]. Because

of the matching condition at s = µ2
M the coefficients of the conformal expansion are in one-to-

one correspondence with the low energy constants of the effective Lagrangian, which are free

parameters to be fitted to data.

4. Results

The free parameters in our scheme were determined from the fit to the Nijmegen partial wave

analysis (PWA) [21]. Another PWA [22] is used for comparison. For the fit the energy points

below Tlab = 100 MeV are taken into account in order to correctly reproduce the threshold physics.

The results of our fit at chiral orders Q0-Q3 are shown in Fig. 2 (Fig. 3) for the lowest uncoupled

(coupled) partial waves. The quality of the fit is comparable with the one obtained in the potential

approach. In particular, the convergence pattern from the order Q0 to Q3 looks very reasonable.

Another indication of the convergence of the perturbative expansion in the subthreshold region are

the values of the amplitude at the matching point s = µ2
M after subtracting the dominant one-pion-

exchange contribution. They are listed in Table 1 (Table 2) for the uncoupled (coupled) partial

waves.
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Figure 2: Neutron-proton phase shifts in uncoupled S- and P-waves calculated at orders Q0 (dotted lines),

Q1 (dash-dotted lines), Q2 (dashed lines) and Q3 (solid lines) in comparison with the Nijmegen [21] (filled

circles) and SAID [23, 22] (filled triangles) PWAs.

1S0
1P1

3P1
3P0

Q0 5.79×102

Q1 5.82×102

Q2 8.53×102 1.42×103 3.46×103
−6.43×103

Q3 8.63×102 2.19×103 4.81×103
−5.70×103

Table 1: Generalized potential at the matching point U(µ2
M) at different chiral orders after subtracting one-

pion exchange contribution. Uncoupled partial waves.

Finally we addressed a question of the uniqueness of the solutions obtained by our method

since the principles of effective field theory tell us that we have to find the most general S-matrix.

It is known that the non-linear equation (2.2) may possess multiple solutions due to the so-called

Castillejo-Dalitz-Dyson poles [24, 25]. Another way to see it is to modify the short range part of

the generalized potential U(s) by varying the cutoff Λ. In Fig. 4 we show the predictions (there are

no free parameters in D-waves at order Q3) for the 1D2 partial wave for two choices of the cutoff:

Λ2 = 4m2
N − (3Mπ)

2 and Λ2 = 4m2
N − (4Mπ)

2. A large difference between the two results indicates

that one should have an additional condition to choose a physically correct solution. Currently we

are trying to formulate such a condition in a mathematically correct way.
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Figure 3: Neutron-proton phase shifts and mixing angles in the coupled 3S1-3D1 and 3P2-3F2 channels. For

notation see Fig. 2.

3S1 −
3 D1 ,U11

3S1 −
3 D1 ,U12

3P2 −
3 D2 ,U11

Q0
−2.95×102

Q1 6.14×102

Q2 2.08×102
−5.92×103 5.59×102

Q3 2.07×102
−6.94×103 7.50×102

Table 2: Matrix elements of the generalized potential at the matching point Ui j(µ
2
M) at different chiral orders

after subtracting one-pion exchange contribution. Coupled partial waves.

5. Summary

The nucleon-nucleon interaction close to threshold is studied within an approach based on an

analytic extrapolation of subthreshold amplitudes calculated in ChPT using partial-wave dispersion

relations. The free parameters of the chiral Lagrangian are adjusted to the nucleon-nucleon phase

shifts using Nijmegen partial-wave analysis. The obtained results are in a reasonable agreement

with the empirical PWAs and are comparable with the ones obtained in the potential approach.

A reasonable convergence for the subthreshold amplitude was demonstrated. We also address the

question of the uniqueness of the obtained results.
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Figure 4: Predictions for the 1D2 partial wave. Solid line corresponds to Λ2 = 4m2
N − (3Mπ)

2, dashed line

corresponds to Λ2 = 4m2
N − (4Mπ)

2. The data are from [21].
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