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Three-nucleon forces play very important role in few and many-body simulations of nu-
clei/nuclear reactions at low energy. Knowledge of their precise form might lead to resolution of
long standing puzzles in few-nucleon physics (e.g. Ay-puzzle in elastic nucleon-deuteron scatter-
ing). Chiral effective field theory provides a systematically improvable tool for their calculation.
By now three-nucleon forces have been calculated up to N3LO (partly up to N4LO) in chiral ex-
pansion. In this proceeding I will discuss the current status of their construction and their ongoing
implementation in few-body calculations.
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1. Introduction

In the low energy sector, where momenta of hadrons are much smaller than the chiral sym-
metry breaking scale of the order Λχ ∼ 1GeV, chiral effective field theory (EFT) proved to be a
powerful tool for description of various hadronic scattering processes and nuclear spectra. Based
on an assumption that approximate chiral symmetry of QCD is spontaneously broken and on the
experimental evidence of the mass gap between the masses of the pions (interpreted as Goldstone
bosons in the chiral limit) and heavier mesons (like ρ,ω etc.) it is possible to formulate effective
field theory of QCD where the expansion parameter is given by small momenta and masses of light
mesons divided by the hard scale Λχ . Rather than using quarks and gluon degrees of freedom (dof)
it is much more efficient to build a low energy EFT of QCD with hadronic degrees of freedom, the
only observed dof in the low energy sector. This theory, called chiral perturbation theory (χPT),
was successfully applied in the pure meson and meson-nucleon sector (see [1] for a review). In the
two- and more-nucleon sector the existence of bound states does not allow one to use the purely
perturbative approach of χPT. Nevertheless, a perturbative approach can be applied to the effective
potential (nuclear forces) which, strictly speaking, can not be uniquely determined from matching
to the nuclear observables. The reason for its non-uniqueness is a non-unique off-shell behavior of
the nucleons within a certain nuclear process. However, once calculated in χPT and sandwiched
in the Lippmann-Schwinger equation (or its generalization in more than two-nucleon sector) one
can numerically compute physical observables which, by definition, do not depend on off-shell
information of the nuclear force. The possibility of such a perturbative access to the nuclear forces
was first mentioned in pioneering papers of Steven Weinberg [2, 3, 4]. Based on Weinberg’s ideas
chiral nuclear forces have been calculated up to fifth [5, 6, 7] (partly even up to sixth [8]) order in
the chiral expansion within the last two decades (see [9, 10] for reviews).

Chiral EFT approach has its advantages and disadvantages: One weakness of the chiral EFT
approach is a fast increase of low-energy constants (LEC) with increasing chiral order. The val-
ues of these LEC’s are not constrained by chiral symmetry and are fitting parameters in practical
calculations. This might lead to decrease of predictive power of the theory. However, due to abun-
dance of experimental data in the two- and three-nucleon sectors all the LEC’s which appear in
nuclear forces can be fitted to the data and there is a lot of room left for prediction in the three-
and more-nucleon sector. Another obvious disadvantage is inherited from perturbative treatment of
field theory. The convergence radius of χPT is a priori unknown. We can only hope (without any
proof) that finite-order χPT calculations converge rapidly enough to final result. Keeping in mind
all this we would like also to mention various advantages of chiral approach. The most promi-
nent one is a direct connection to QCD. Since we are dealing with the most general EFT which
is constructed inline with symmetries of QCD we can expect that LEC’s (at least in meson- and
single-nucleon sector where perturbative renormalization of χPT is possible) can in principle be
calculated in the future from lattice QCD. This would obviously increase the predictive power of
χPT. More practical advantage of χPT is coming from the constraints of chiral symmetry. The
processes like pion-pion, pion-nucleon, nucleon-nucleon scattering are not only calculated from
one and the same chiral Lagrangian but are also related to each other. LEC’s which appear in pion-
nucleon scattering e.g. show up in the nucleon-nucleon scattering potential where pion-nucleon
amplitude (in an unphysical kinematic region) is a subprocess. The unique relation between all
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these processes is directly dictated by the Ward-Takahashi identities of QCD and shows up natu-
rally in the χPT approach. Due to the power counting, the χPT approach naturally explains the
hierarchy of the nuclear forces: two-nucleon forces start to show up at leading order. In contrast to
this, three-nucleon forces start to show up first at next-to-next-to-leading (N2LO) and four-nucleon
forces start to contribute at next-to-next-to-next-to-leading (N3LO). For this reason we have a hier-
archy of the forces

V2N �V3N �V4N , (1.1)

where V2N ,V3N and V4N denote two-, three- and four-nucleon forces, respectively. Another impor-
tant strength of the χPT approach is its predictive power of the long range behavior of nuclear
forces. Nuclear forces can be decomposed into local and non-local contributions. Non-local one
comes from contact interactions and relativistic corrections. The local one (which means that they
depend only on relative momenta) comes from pion exchange topologies and contact interactions.
When we transform the relative momenta of the local part of the force in coordinate space we
can decompose the local part of the nuclear forces into long-range part (relative distance r much
larger than Compton wave length of the pion r� λπ ∼ 1.4fm), intermediate-range (r ∼ λπ ) and
short-range part (r� λπ ). The short-range part of the nuclear force is parametrized by LEC’s and
depends on a regularization scheme adapted in order to regularize the Lippmann-Schwinger equa-
tion. The long- (and intermediate-)range part of the force is scheme independent and is entirely
predicted by χPT and so can be tested by confronting various experimental data for a given nu-
clear process. Nowadays, chiral nuclear forces are known very precisely due to quite high order of
their χPT calculation. This allows one doing precision physics with light nuclei in the low-energy
sector.

In the following, I will give a status report on the construction of the nuclear forces and on
their partial wave decomposition which is essential for their implementations in Faddeev equations
and many-body simulations like no core shell model or coupled cluster approaches. In section 2
I will briefly discuss the novelties in nucleon-nucleon sector. More extensive discussion can be
found in the proceeding of Epelbaum and in original publications [5, 6, 7]. In section 3 I will report
on the status of the construction of the three-nucleon forces and will describe how partial wave
decomposition can be performed in a very efficient way for local forces.

2. Novelties in chiral nucleon-nucleon forces

The long- and intermediate-range contributions to the chiral NN force at N3LO have been
derived by Norbert Kaiser [11, 12, 13, 14] more than ten years ago. Briefly after these publications
the fits of the LEC’s have been performed by two groups: Entem and Machleidt (EM) [15] and
by Epelbaum, Glöckle and Meißner (EGM) [16]. These efforts in combination with N2LO three-
nucleon forces lead to very fruitful applications in the three- and more-nucleon sector [10, 17, 18].
Both groups EM and EGM used a non-local version of the regulator. EGM estimated the theoretical
uncertainty of calculation by variation of the cut-off in some reasonable region (between 400 and
700 MeV). Further increase of the cutoff would lead to unphysical deeply bound states which would
make many-body simulations with these forces impossible. On top of the non-local regularization
EGM used spectral function regularization [19] in order to cutoff a too strong attraction of two-pion
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exchange contributions at N2LO. This lead to the introduction of an additional spectral function
cut-off. Both cutoffs have been varied independently from each other to give a theoretical error
estimate of the calculations. EM used different non-local cutoffs for different partial waves. In this
way additional tuning parameters have been introduced in the fit to NN scattering data.

Last year, the last building block (subleading two-pion-exchange contributions at two-loop
level) of the N4LO NN force has been constructed independently by Entem et al. [7] and our
group [5]. Beside increasing of one chiral order, two further improvements have been done in
[5] compared with the earlier work of EGM [16]: Nonlocal cutoff regularization cuts off high
momentum modes which is not completely equivalent to a regularization of the short-range part.
To regularize the short range part, one can use semi-local regulator. The local part of the nuclear
force is regularized in coordinate space with the local cutoff and short-range part is regularized with
a non-local cutoff in momentum space. This procedure is preferable since semi-local regulator does
not affect analytic structure of the amplitude by construction. With this regulator one can fit LEC’s
to the NN phase shifts by using the value of c3 =−4.69GeV−1 ( which is fixed from pion-nucleon
scattering inside the Mandelstam triangle [20]) without having spurious deeply-bound states in
the NN spectrum. In EGM, even with additional spectral function regularization, a reduced value
of c3 = −3.40GeV−1 has been used. The use of c3 = −4.69GeV−1 would directly lead to the
appearance of spurious deeply bound states at N2LO. The second improvement is in the use of
uncertainty quantification. The theoretical error quantification based on the variation of the cutoff
has some disadvantages: The region where one performs cutoff variation is chosen in a somewhat
arbitrary way. From the practical point of view, one does not want to choose the cutoff too low
in order not to affect low-energy physics. On the other hand one can not choose cutoff too high
due to the appearance of spurious deeply bound states. There is obviously a reflection of some
arbitrariness in this choice. Additionally to this issue it is important to mention that new NN
LEC’s show up only at even chiral orders in NN force. The appearing NN LEC’s are responsible
for compensating the cutoff dependence. Using cutoff variation as error estimate would lead to
no decrease of the theoretical error by going from an even order to next (odd) order in chiral
expansion. Proper error quantification should lead to decrease of theoretical order at every chiral
order. The idea is to quantify the theoretical error of the given calculated observable at a fixed
cutoff. The theoretical error can be estimated from neglected higher order corrections. The method
can be easily explained on the following simplified example. Assume we have an observable X(Q)

(where Q is an expansion parameter) which is calculated up to certain order n in chiral expansion
and which is here oversimplified by a Taylor series:

X(Q) =
n

∑
i=0

aiQi +O(Qn+1). (2.1)

The truncation error can be estimated via

∆
n
X = max(|a0|, . . . , |an|)Qn+1. (2.2)

In this estimate we hope that the largest LEC already appeared in the performed calculation and
the hope is that at higher orders no larger LEC’s will appear. If this nevertheless happens, this
will flow into the error estimate of the next order. From statistical considerations this approach
corresponds to consistent quantitative predictions for 68% degree of belief intervals [21]. In the
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true chiral expansion we do not have a simple Taylor series but also non-polynomial peaces like
e.g. chiral logarithms. Eq. 2.2 can be replaced in this case by

∆
n
X = max(Qn+1|X0|,Qn|X2−X0|,Qn−1|X3−X2|, . . . ,Q|Xn−Xn−1|), 1 (2.3)

where Xi denotes an approximation of X(Q) to the chiral order i [6]. Indeed Eq. 2.3 is equivalent
to Eq. 2.2 in the case of oversimplified example 2.1:

X0 = a0, X2 = a0 +a2Q2, X2 = a0 +a2Q2 +a3Q3, . . . (2.4)

Obviously this error estimate can be performed for every fixed cutoff and leads to a decrease of the
theoretical error at every chiral order. It even allows one to identify the optimal cutoff: the cutoff
for which we get the smallest theoretical error. An illustration of this method is shown in Fig. 1
for the total cross section of neutron-proton scattering at four different laboratory energies for five
different cutoffs Ri [5]. One can clearly see the decrease of theoretical error at every chiral order.
The error bands overlap in most of the cases and we can see that R2 = 0.9fm and R3 = 1.0fm are
preferable cutoffs for which we get the smallest error bars. Chiral error quantification method can
be applied to any observable. As an application of this method we looked at the nucleon deuteron
(Nd) scattering and at the spectra of light nuclei with only chiral NN force implemented up to
fifth order in chiral expansion. Here I restrict my discussion only to the total cross section of Nd
scattering. More extensive discussion (in particular of the spectrum and radii of light nuclei) can
be found in [23]. In Fig. 2 we show chiral expansion of Nd total cross section for a fixed cutoff
R = 1.0fm. For every chiral order, we also show the theoretical error due to the chiral uncertainty
quantification. Comparison with experimental results shows clearly the missing contribution of
the three-nucleon forces. Obviously, this was known long before. In [23] however, the statement
is sharpened due to the given chiral error estimate: The size of the missing three-nucleon forces
appears as large as the error bars of the Q2 order. Indeed the three-nucleon forces start to contribute
at the third order in chiral expansion. So, their expected size agrees with the one estimated by the
adopted chiral error quantification.

3. Chiral three-nucleon forces

Chiral three-nucleon forces (3NF) start to contribute at N2LO. More than twenty years ago
they have been worked out by Ordonez and van Kolck [25] see also [26, 27]. The first complete
analysis of Nd scattering up to N2LO was performed by Epelbaum et al. [28]. In later works the
leading N2LO 3NF’s were combined with the N3LO NN forces. Three- and more-nucleon sector
has been extensively studied with these forces with fairly good agreement with experimental data,
see e.g. [18, 17, 10] for recent reviews. Some deficiencies still remain: in the three-nucleon sector
the most prominent one are Ay-puzzle in Nd scattering and the discrepancy for the Nd break up
reaction in the space star configuration. It will be interesting to see if the remaining discrepancies
will be resolved by further corrections to 3NF at N3LO or N4LO.

1Note that there is no X1 since there are no contributions at the order Q to the (parity conserving) chiral nuclear
forces.
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Figure 1: Predictions for the np total cross section based on the improved chiral NN potentials at NLO
(filled squares, color online: orange), N2LO (solid diamonds, color online: green), N3LO (filled triangles,
color online: blue) and N4LO (filled circles, color online: red) at the laboratory energies of 50, 96, 143
and 200 MeV for the different choices of the cutoff: R1 = 0.8 fm, R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm
and R5 = 1.2 fm. The horizontal band refers to the result of the Nijmegen partial wave analysis with the
uncertainty estimated as explained in [5]. Also shown are experimental data of Ref. [22].

The construction of 3NF up to N3LO has been completed in 2011 by Bernard et al. [29, 30]2

see also the work by Ishikawa and Robilotta [31] for two-pion-exchange part of N3LO 3NF. It
took three more years until they could be implemented numerically in the old non-local cutoff
scheme [32]. These results, however, should be considered as an intermediate step. Our current
understanding is that the forces in this work were not properly regularized which lead to unnaturally
large LECs CD and CE from N2LO 3NF’s. At the moment we are working on the numerical
implementations of the N3LO 3NF’s within the novel semi-local regularization scheme with new
chiral NN forces. The expectation is that in this scheme, CD and CE terms will be of a natural size
and all regularization issues will be under control.

For numerical implementations of the 3NF’s one has to perform their partial wave decompo-
sition (PWD). The reason for this is that Faddeev equation is solved in the partial wave basis. Also
for NCSM simulations one needs partial wave decomposed input. This is a non-trivial task due to

2The long range part of 3NF’s has been worked out even upto N4LO [33, 34]. Their short and intermediate range
parts are still under construction.
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Figure 2: (Color online) Predictions for Nd total cross section based on the NN potentials of Refs. [6,
5] for R = 1.0 fm without including the three-nucleon forces. Error bars correspond to the chiral error
quantification defined in [23]. Experimental data are from Ref. [24].

the large three-nucleon phase space. Due to abundance of channels one has to calculate a 105×105

matrix. Each matrix element involves for the most general 3NF a five dimensional numerical in-
tegration over the angles of Jacobi momenta. In this formulation, 3NF PWD is very expensive
computationally. There is, however, a way how to perform 3NF PWD in a more efficient way. The
most complicated part of the chiral 3NF is local. Non-localities arise from contact interactions and
relativistic corrections and have a polynomial form3. The idea is to use the locality feature of a
part of the 3NF and reduce the number of numerical angular integrations from five to three. Due
to a polynomial form of the non-local parts of chiral 3NF, we can put the polynomial information
into spherical harmonics over Jacobi momenta which are anyway present in the calculation. In this
way, the same method can be applied to the entire chiral 3NF. The implementation of this idea
is documented in Hebeler et al. [35]. In many cases, the calculations are 1000 times faster than
in the original five-dimensional formulation. In this way we could perform 3NF PWD and store
unregularized N3LO 3NF matrix elements for a large set of angular momenta which is sufficient
for studies of light and intermediate mass nuclei.

The last technical milestone is a semi-local regularization of the chiral 3NF. We would like to
adopt the same regularization for 3NF’s as in NN case: The local part which includes pion physics
should be regularized in coordinate space and the short range part should be regularized with the
standard non-local regulator in momentum space. In this way the long-range physics (prediction of
the χPT approach) will not be affected by regularization. However, performing Fourier transform
of the N3LO 3NF’s into coordinate space, applying regularization, and transforming them back to
momentum space is a non-trivial task due to the complicated structure of the chiral 3NF at this
order. A better idea is to use the fact that the local regularization in coordinate space is a simple
multiplication of the force with the regulator function R(r12,r13,r23) which depends on relative
distances ri j between nucleons i and j. It is well known that the Fourier transform of a product of

3At least up to N4LO.
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two functions ends up to be a convolution integral of Fourier transformed functions. For this reason,
the Fourier transform of the product of the chiral 3NF with the regulator in coordinate space will
be a convolution integral of the chiral 3NF and the Fourier transformed regulator in momentum
space. But in the PWD basis a convolution integral becomes a simple matrix multiplication. For
this reason, we can use already stored unregularized matrix elements of the chiral 3NF and multiply
them with the partial-wave decomposed regulator matrix. This seems to be a very elegant way of
producing semi-local regularized matrix elements. Numerical implementation of this idea is under
way.

4. Summary

In this proceeding I gave a brief status report about construction and implementation of the
chiral nuclear forces up to N4LO in chiral expansion. In the two-nucleon sector, the forces have
been developed up to N4LO. Additionally to construction there are two important novelties. The
first one is the introduction of semi-local regularization which does not affect long-range physics
by construction. Spectral function regularization becomes with this regularization obsolete, and it
becomes possible to use LEC’s determined in the pion-nucleon sector without introducing spuri-
ous deeply bound states. The second novelty is the introduction of chiral uncertainty quantification
which allows one to give a theoretical error estimate at fixed cutoff. This appears to be a better
approach than the error estimate through cutoff variation in which even to odd chiral order increase
does not lead to decrease of theoretical error and the cutoff region in which one varies the cutoffs
appears somewhat arbitrary. Due to its simplicity, it is possible to apply this error quantification
to few- and many-body observables and get predictions with quantified theoretical errors. There is
also much progress on the construction and implementation of the three-nucleon forces. They have
been constructed partly up to N4LO. New ideas to exploit the locality feature in PWD lead to an
increase of efficiency by factor 1000 in very expensive PWD productions of 3NF matrix elements.
This allowed us to produce and store a large basis of 3NF matrix elements up to N3LO which
are sufficient for studies of light and intermediate mass nuclei. Implementation of the semi-local
regularization to N3LO 3NF is a last technical milestone. The idea of its implementation via a
convolution in momentum space is currently under construction. Once finished we will enter a fas-
cinating time of simulation runs where many few- and many-body observables will be confronted
with the complete N3LO calculations with properly quantified theoretical error. Chiral 3NF’s will
be extensively tested in light and heavier nuclear systems. This is the main goal of LENPIC (Low
Energy Nuclear Physics International Collaboration) which is recently formed out of scientists
from the chiral, few-body and many-body communities.
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