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1. Introduction

Antikaon-nucleon scattering is an excellent testing ground for understanding of the SU(3)
QCD dynamics at low energies in the one-baryon sector. Starting from the seminal paper [1], it is
often described within the so-called unitarized Chiral Perturbation Theory, which uses the chiral
potential calculated at a certain order. The common feature of such approaches is a relatively large
number of free parameters, which are fixed from the fit to the experimental data, see for recent
developments, e.g., Refs. [2, 3, 4, 5]. An essential part of the input is coming from the S-wave K̄N
scattering lengths, which “nail down” the amplitudes at the K̄N threshold and thus impose stringent
constraints both on the scattering in the K̄N channel as well as the sub-threshold behavior of the
amplitudes.

The experiments with kaonic atoms have been carried out in order to extract the precise values
of the S-wave K̄N scattering lengths. Recently, the energy shift and width of kaonic hydrogen were
measured very accurately in the SIDDHARTA experiment at DAΦNE [6]. These two quantities
can be related to the K−p scattering lengths via the so-called modified Deser-type formula, see
Refs. [7, 8]. The same experimental collaboration has made an attempt to measure the energy
and the width of the ground state of the kaonic deuterium as well. What makes the experiments
with kaonic deuterium extremely important is the fact that the S-wave K̄N scattering lengths are
complex-valued. Therefore, extracting two complex scattering lengths a0, a1 corresponding to
the total isospin I = 0,1 in the K̄N system implies the determination of four real quantities and
thus requires measurements of four independent observables. Two observables are provided by the
kaonic hydrogen, and the remaining two can come from, e.g., the kaonic deuterium. Therefore, it
remains to derive an explicit relation between the K̄d and K̄N scattering lengths. This can be done
assuming that the nucleons are infinitely heavy, leading to the type of Brueckner formula [9, 10].
However, there exists no a priori reason to believe that this is a good approximation in view of the
fact that the mass ratio MK/mN ' 0.5 is not small. The goal of the present work is to continue the
work of Ref. [11] with the main goal to formulate a procedure for including the recoil corrections
perturbatively into the multiple-scattering series, in which the static interactions are summed up to
all orders.

2. Theoretical framework

Our approach relies on the existence of two distinct momentum scales. The nucleon-nucleon
and three-particle interactions are characterized by a low scale (of the order of the pion mass) and
are described by non-local, energy-independent potentials VNN(p,q) and V3(p1,p2,p3;q1,q2,q3),
respectively. On the contrary, K̄N interactions are characterized by a heavier scale (numerically of
the order of the mass of the ρ,ω, · · · resonances). We shall describe these interactions by a tower
of local terms in the Lagrangian with zero, two,. . . space derivatives. The couplings emerging in
these terms are expressed through the K̄N scattering lengths, effective radii and so on in a standard
manner. For this reason, a perturbative expansion in such an effective theory automatically yields
the multiple-scattering series, known from the potential scattering framework.

A generic term in the multiple-scattering expansion contains the diagrams in which the kaons
are hopping on the same nucleon (the self-energy-type diagrams) as well as kaons exchanged
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Figure 1: The types of the diagrams emerging in the multiple-scattering series: a) the self-energy type
diagram; b) the exchange diagram; c) any number of the “potential exchanges” between two nucleons in the
intermediate state.

between two nucleons, see Figs. 1 (a) and (b), respectively. Since NN interactions are non-
perturbative, they have to be included to all orders. This is normally done by solving the Lippmann-
Schwinger type equations which yield the NN amplitudes at low-energies. The NN amplitude in
its turn is to be included in each intermediate state of the K̄NN− K̄NN Feynman diagrams, see
Fig. 1 (c). In the vicinity of the static limit (ξ → 0), only diagram of type (b) survives. In this limit
the series in the diagrams can be summed up to all orders. Taking the Fourier transform and folding
the result with the deuteron wave function in the isospin limit, the result of this reads

Ast =
1

1+ξ/2

∫
d3r |Ψ(r)|2 3ã1r2 + rã0(4ã1 + r)

ã0(r−2ã1)+ r(2r− ã1)
, (2.1)

where r := |r| and Ψ(r) stands for the wave function of the deuteron, normalized to unity. The K̄N
scattering lengths of isospin I enter the above equation as ãI = (1+ ξ )aI . Away from the static
limit, the K̄NN Green functions g in the exchange diagram can be decomposed to a static part gst
and the recoil correction ∆g as g := gst+∆g. Let ã denote a generic K̄N scattering length which
is related to the non-derivative coupling in the effective Lagrangian. The multiple-scattering series
can be written as

ã+ ãgã+ ãgãgã+ · · ·=
{

ã+ ã2gst+ · · ·
}
+
{

ã+ ã2gst+ · · ·
}
(∆g)

{
ã+ ã2gst+ · · ·

}
+ · · · .

It is seen that the whole multiple-scattering series can be rearranged so that the static contribu-
tions are re-summed to all orders (the expression in the first curly bracket in the r.h.s of the above
equation), whereas the recoil corrections enter perturbatively, in the form of one, two, . . . “recoil
insertions”, see the terms ∼ (∆g)n, with n = 1, · · · . The contributions from the self-energy-type
diagrams and those including NN interactions are parts of the recoil insertions, because they are
absent in the static case. Moreover, in the original publication [12] we show that each insertion
counts as O(ξ 1/2) (or, in some cases, as O(ξ )) and, consequently, to carry out calculations at a
given order in the expansion parameter ξ , it suffices to consider a finite number of insertions.

3. Single recoil insertion

3.1 Formalism

As discussed in the previous section, the antikaon-deuteron scattering length can be written
as A = Ast+A (1)+A (2)+ · · · , where the individual terms correspond to the zero, one, two, . . .
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Figure 2: Diagrams with one recoil insertion, where dashed (solid) lines denote the kaon (nucleon) lines,
respectively. The whole diagram is folded by the deuteron wave functions (semicircles). The shaded boxes
with kaon propagators symbolically denote the re-summed infinite series of kaon exchange graphs in the
static limit, whereas the dashed lines outside of the boxes denote the retarded kaon propagators. The nucleon-
nucleon amplitude is referred to as MNN .

recoil insertions. The term with no recoil insertions, i.e. static part, is given in Eq. (2.1). In
this section, we wish to present compact explicit expression for the one recoil insertion correction
A (1). At this order, one has three diagrams as depicted in Fig. 2. The contributions from individ-
ual diagrams can be sizable, however, as discussed in the original publication [12] there are large
cancellations between those. These appear as a consequence of the Pauli selection rules and orthog-
onality of bound-state deuteron wave function and Green function of the NN state. Therefore, they
become quite evident using the isospin basis of the intermediate NN pair. In this representation,
the single-recoil correction reads

A (1) = (A1 +∆Ast,1)+(A0 +A (c)+∆Ast,0) ,

where ∆Ast,i accounts for the difference between the recoil K̄NN Greens function and those of the
renormalized self energy in diagram (a) of Fig. 2. Using p1/2 := p± l/2, the single terms read

A0 =
1
2

1
1+ξ/2

∫ d3pd3l
(2π)6 Gr(p, l)

(
Φ

+(p1)
(

Φ
+(p1)+Φ

+(p2)
))

,

A1 =
1
2

1
1+ξ/2

∫ d3pd3l
(2π)6 Gr(p, l)

(
Φ
−(p1)

(
Φ
−(p1)−Φ

−(p2)
)
+2Φx(p1)

(
Φx(p1)−Φx(p2)

))
,

A (c) =
ξ

8πmN

1
1+ξ/2

∫ d3pd3ld3q
(2π)9 G(p, l)MNN(p,q, l)G(q, l)

(
Φ

+(p1)Φ
+(q1)

)
,

∆Ast,0 =−
ξ

2(1+ξ )(1+ξ/2)

∫
d3r

Ψ2(r)
r

A+(r)2 ,

∆Ast,1 =
ξ

2(1+ξ )(1+ξ/2)

∫
d3r

Ψ2(r)
r

(
A−(r)2 +2Ax(r)2) .

Here, the Fourier transform of Ψ(r)A±(x)(r) is denoted by Φ
±
(x), where the rational functions A±(r) :=

Ap(r)±An(r) and Ax(r) account for static contributions, resumed to all orders, see shaded blocks
in Fig. 2. Explicitly, they are derived in the original publication [12] and read

Ap(r) =
r2a1 + ra0(2a1 + r)

a0(r−2a1)+ r(2r−a1)
, An(r) =

2ra1(a0 + r)
a0(r−2a1)+(2r−a1)r

, Ax(r) =
r2(a0−a1)

a0(2a1− r)+(a1−2r)r
.

The Green functions corresponding to the intermediate K̄NN state read

Gst(l) =
4π

l2
, G(p, l) =

4π

l2(1+ξ/2)+2ξ (p2 + γ2)
, Gr(p, l) = G(p, l)− 1

1+ξ
Gst(l) .
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Furthermore, the nucleon-nucleon amplitude MNN which enters A (c) is determined from a solution
of the Lippmann-Schwinger equation for a given two-nucleon potential VNN

MNN(p,q, l) =VNN(p,q)+
ξ

2mN

∫ d3k
(2π)3

VNN(p,k)MNN(k,q, l)
l2(1+ξ/2)+2ξ (k2 + γ2)

,

where we used explicitly that the energy relevant for the study is E =−εd− l2(1+ξ/2)/2MK for
εd denoting the deuteron binding energy.

Before coming to the final numerical results, we wish to note that the above expression of the
single recoil insertion depend on the variable ξ in a non-trivial way. In order to establish system-
atic power-counting rules, it is therefore necessary to perform an expansion of this expression in
ξ . Further, considering such an expansion helps one to reveal the pattern of cancellations of the
leading terms, which has been discussed already in Ref. [11]. The uniform expansion method, see
Refs. [14, 13], allows one to perform such an expansion by identifying three different momentum
regions according to the scales appearing in the problem. The integrand is expanded in each re-
gion before performing the integration, and the results are summed up. Utilizing this method and
introducing a modified expansion parameter ξ̃ = ξ/(1+ξ/2), we find that the expansion of each
contribution A1, A0 and A (c) in powers of ξ̃ 1/2 indeed converges quite rapidly. For more details
on the expansion, explicit results and discussion of cancellation patterns, the reader is referred to
the original publication [12].

3.2 Numerical results

Unfortunately, no experimental results on kaon-deuteron scattering length are available yet.
Therefore, in our exploratory study we estimate the size of the recoil correction for a given set of
the K̄N scattering lengths used as input in Ref. [15]

a0 =−1.62+0.78i fm , a1 = 0.18+0.68i fm .

Moreover, at this stage we use the phenomenological nucleon-nucleon Hulthén and PEST [16]
separable potentials instead of a more complicated treatment based completely on chiral EFT. The
results of the calculations are shown in the Tab. 1.

Based on these results we conclude that in the isoscalar channel, the individual contribu-
tions, which still contain the dominant O(ξ̃ 1/2) term, are very large, especially the imaginary parts
thereof. However, they undergo significant cancellations, yielding only about a 10% net correction
to the imaginary part of the static term. The resulting isovector recoil correction appears to be even
smaller providing only about a 3% correction to the static term. Its smallness can be understood
from the exact cancellation of the O(ξ̃ 1/2) term along with some additional cancellations among
higher-order terms. Furthermore, the net correction A (1) which stems from one recoil insertion in
the multiple scattering diagrams appears to be quite small, of order of ' 6−8% of Ast, despite the
large value of ξ . An additional suppression is partly accounted for by cancellations of the isoscalar
and isovector recoil corrections.

Finally, it is instructive to compare these results to those of numerical estimations. In Ref. [15]
the value A ' (−1.47+ i1.11) fm was obtained from the solution of the Faddeev equations with
the one-channel energy-independent optical potential, which was adjusted to reproduce the same
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Hulthén potential
Ast −1.49+1.19i

A (1)

A1 −0.13+0.16i
∆Ast,1 +0.12−0.20i

+0.00−0.04i

A0 −0.27+0.87i
∆Ast,0 −0.12+0.33i
A (c) +0.35−1.06i

−0.03+0.13i

Sum: −0.03+0.09i

Ast+A (1) −1.52+1.27i

PEST potential
Ast −1.55+1.25i

A (1)

A1 −0.13+0.18i
∆Ast,1 +0.13−0.22i

+0.00−0.04i

A0 −0.29+0.97i
∆Ast,0 −0.11+0.34i
A (c) +0.36−1.19i

−0.04+0.12i

Sum: −0.04+0.08i

Ast+A (1) −1.59+1.32i

Table 1: The recoil corrections to the K̄d scattering length from one insertion of the retarded block. All
quantities are given in units of fm.

K̄N scattering lengths as used in our calculation. Despite the differences in two calculations, such
as different NN models, or the use of the off-shell form factors, needed to regularize the Faddeev
calculations, the differences between the static result and the solution of the Faddeev equation are,
generally, of the same order as the full recoil correction A (1).
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