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The adiabatic projection method is a general framework for obtaining a low-energy effective
Hamiltonian for clusters. Previous studies have used the adiabatic projection method in com-
bination with the finite-volume energy Lüscher’s method to extract scattering phase shifts. We
discuss several methods to calculate elastic phase shifts directly from asymptotic cluster wave
functions obtained from the effective cluster Hamiltonian for examples in one and three dimen-
sions. This approach is less sensitive than the finite-volume energy Lüscher method to stochastic
and systematic errors which appear in the application of the adiabatic projection method.
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1. Introduction

Recent progress in ab initio description of nuclear scattering and reactions on the lattice was
achieved using different techniques [1, 2]. In this report we focus on the adiabatic projection
method [3, 4, 5, 6]. The general strategy in this formalism is described in the pioneering works
[7, 8, 9] and involves two steps. First, an effective adiabatic Hamiltonian for the nuclei involved in
the scattering process is determined using the Euclidean time projection. The original, microscopic
Hamiltonian exerted in the time projection is usually derived in pionless or chiral EFT. In the
second step, the corresponding scattering phase shifts are extracted [8]. We argue that we can use
a method less sensitive to small stochastic and systematic errors than the usual method, namely
Lüscher’s finite-volume method [10, 11], for this step. The results presented in this proceeding are
described in more detail in Ref. [12].

2. The adiabatic projection method

In the following we describe the first step of the adiabatic projection method, the derivation of
the effective adiabatic Hamiltonian. In the case of a nonzero temporal lattice spacing the adiabatic
Hamiltonian is replaced by an adiabatic transfer matrix. First, we define a set of two-cluster states
on a L3 periodic lattice. They are distinguished by their initial separation vector ~R. The crucial fact
about the two-cluster states is that each of the clusters is localized. Therefore for large separations
they can be represented as a tensor product of two one-cluster states,

|~R〉= ∑
~r
|~r+~R〉1⊗|~r〉2. (2.1)

Then, Euclidean time evolution with the microscopic Hamiltonian is used in order to form dressed
cluster states

|~R〉τ = exp(−Hτ)|~R〉. (2.2)

This procedure incorporates deformations and polarizations of the interacting clusters automati-
cally. Those dressed cluster states span the low-energy subspace of two-cluster continuum states in
the limit of large Euclidean time. Finally, we evaluate the following matrices

[Hτ ]~R,~R′ = τ〈~R|H|~R′〉τ , [Nτ ]~R,~R′ = τ〈~R|~R′〉τ , (2.3)

[Ha
τ ]~R,~R′ = ∑

~R′′,~R′′′

[
N−1/2

τ

]
~R,~R′′

[Hτ ]~R′′,~R′′′
[
N−1/2

τ

]
~R′′′,~R′

. (2.4)

Thereby, [Hτ ]~R,~R′ are matrix elements of the microscopic Hamiltonian with respect to the dressed
cluster states, Nτ the norm matrix with respect to them and [Ha

τ ]~R,~R′ the adiabatic Hamiltonian
matrix. The multiplication by the inverse of the norm matrix is neccesary since the dressed cluster
states |~R〉τ are, in general, not orthogonal. The square root of the norm matrix is incorporated in
order to keep the adiabatic Hamiltonian symmetric.

In the limit of large Euclidean time the low-enery spectra of Ha
τ of the microscropic Hamilto-

nian H coincide. The most evident way to do the second step of the adiabatic projection method,
namely the calculation of the phase shifts, is by applying the Lüscher method to the spectrum of Ha

τ .
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This method [10, 11] relates the energy levels of the two-body scattering states in a periodic finite
volume to the same scattering solutions in the infinite volume. This method relies on the known
asymptotics of the wave function for a short range interaction as well as the known periodicity of
the system. The one-dimensional result of this ansatz is [10]

e2iδ (p) = e−ipL . (2.5)

Thereby, p is the relative momentum, L the size of the finite volume and δ (p) the scattering phase
shift. The relative momentum p is measured between the two clusters. The clusters in this con-
text refer to either a point-like particle or a bound state of more particles. Furthermore, the total
momentum of the two-cluster system is assumed to be zero. In three dimensions there is an addi-
tional complication due to the breaking of rotational invariance by the cubic symmetry of the finite
periodic box. The scattering phase shifts are extracted by applying the formula [10, 11]

pcotδ`(p) =
1

π L
S(η) for `= 0,1 , (2.6)

where S(η) is a function of the relative momentum p due to η =
(

Lp
2π

)2
,

S(η) = lim
Λ→∞

[
Λ

∑
~n

θ
(
Λ2−~n2

)
~n2−η

−4π Λ

]
. (2.7)

The relation between the center-of-mass momentum appearing in Eq. (2.6,2.7) and the finite-
volume energies for `= 0 by [13, 14]

E(p,L) =
p2

2µ
−B1−B2 + τ̄1(η)∆E1(L)+ τ̄2(η)∆E2(L) , (2.8)

where µ is the reduced mass of the system, Bi is the binding energy of the cluster i = {1,2} in the
infinite volume limit, ∆Ei(L) = Ei(L)+Bi are the finite volume energy shifts of the clusters in the
rest frame, and τ̄i(η) is the topological correction factor to the energy of the cluster i,

τ̄(η) =
1

∑~k

(
~k2−η

)−2 ∑
~k

∑
3
i=1 cos(2πki α)

3
(
~k2−η

)2 . (2.9)

Lüscher’s method is a very efficient tool since all of the information about scattering can be
extracted from finite-volume energy values. However, the problem of that method arises due its
reliance on the energy spectrum. The binding energies of scattering nuclei can be much larger
than the finite-volume scattering energy shifts which encode the scattering information. Thus,
these finite-volume energy shifts are very sensitive to imprecise ’measurements’. It should be
measured with the precision of approximately 10 keV in order to extract the s-wave scattering
phase shift with the accuracy of a few degrees. However, the stochastic errors usual for a typical
large-scale Monte Carlo calculation tend to violate this requirement since they grow exponentially
for a large projection time τ . We compare in Fig. 1 the original, microscopic Hamiltonian and
the adiabatic Hamiltonian for the one dimensional particle-dimer system for τ = 0.30 MeV−1. In
the left panel we show their energy spectra and in the right panel the corresponding particle-dimer
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Figure 1: Left panel: Finite-volume energies extracted from the microscopic Hamiltonian and the two-
cluster adiabatic Hamiltonian for the particle-dimer system in one dimension. There are five energy levels
E1 . . .E5. Three correspond to even and two to odd parity phase shifts.
Right panel: The particle-dimer scattering phase shifts calculated from the data in the left panel using
Lüscher’s method. Red (blue) symbols show the results corresponding to the original (adiabatic) Hamil-
tonian. For the adiabatic Hamiltonian small systematic errors in connection with Lüscher’s formula lead to
only an approximate separation of phase shifts with even and odd parity.

scattering phase shifts calculated by Lüscher’s method. For this calculation we used the same
finite-volume energies as in the left panel. Although there is no significant difference in the energy
spectra of the original Hamiltonian and the adiabatic one, the resulting phase shifts show large
discrepancies at low energies. Also, since low-energy phase shifts are extracted from boxes where
the box sizes L are very large and the level spacing between energy levels is small, tiny differences
in energy levels are significant. This results in a more distinct disagreement at low energies if the
phase shifts are derived using different energy levels of the adiabatic Hamiltonian. This example
illustrates the sensivity of Lüscher’s method in finite-volume energy calculations for low-energy
nuclear scattering to small contaminations in energies.

Furthermore, the binding energies of the nuclei involved in the scattering process are different
due to the finite volume [13, 14, 15, 16, 17]. In order to circumvent these problems, we introduce
another approach for the second step of the adiabatic projection method. The main point is to
directly analyze the cluster wave functions which are generated by the adiabatic Hamiltonian and
extract the scattering information from their asymptotic part.

3. Asymptotic cluster wave functions

We need to explain why the cluster wave functions generated by the adiabatic Hamiltonian can
be useful for phase shift extraction. First let us introduce a relative error tolerance ε . Let us also
define a time scale τε at which the initial cluster states are relaxed into a ground state with a relative
contamination less than ε . This relative contamination happens due to excited cluster states. As we
apply Euclidean time projection for the time duration τε , each cluster undergoes spatial diffusion.
The average distance of this diffusion process is proportional to

√
τε/M. Thereby, M is the mass

of the corresponding cluster. This diffusion lengths dε,i have to be much smaller than the box size
L and also the initial cluster separation ~R so that the dressed clusters |~R〉τε

do not overlap. Let
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us define an asymptotic region |~R| > Rε , where we call Rε the asymptotic radius, such that the
overlap between the dressed clusters is less than the error scale ε . In this asymptotic region the
dressed clusters are widely separated and only feel long-range forces. The effective Hamiltonian
Heff for such system is then a free lattice Hamiltonian for two point particles accompanied by the
long-range interactions inherited from the microscopic Hamiltonian. In the asymptotic region we
can write

[Nτ ]~R,~R′ = c
[
e−2Heffτ

]
~R,~R′

, (3.1)

[Hτ ]~R,~R′ = c
[
e−HeffτHeffe−Heffτ

]
~R,~R′

, (3.2)

where the coefficient c is determined by the overlap of the initial single-cluster states (Eq. (2.1))
and the exact single-cluster energy eigenstates. Since[

N−1/2
τ

]
~R,~R′

= c−1/2
[
eHeffτ

]
~R,~R′

, (3.3)

we conclude that in the asymptotic region the adiabatic and the effective cluster Hamiltonian coin-
cide,

[Ha
τ ]~R,~R′ =

[
Heff]

~R,~R′ . (3.4)

This shows that in the asymptotic region the cluster wave functions correspond to the usual
two-point particle wave functions. This allows the application of wave function techniques to them.
In the following we use several variants of wave function techniques. Subsequently, we compare
the resulting scattering information with those calculated by the Lüscher’s energy spectrum method
which employs the scattering state energy and not the wave function.

In the further analysis we use a lattice Hamiltonian that describes the interaction of three
particle species. Let bs and b†

s be the annihilation and creation operators for each particle species
s. We use the Hamiltonian

H0 = ∑
s

∑
l̂

∑
~n

1
2ms

b†
s (~n)

[
2bs(~n)−bs(~n+ l̂)−bs(~n− l̂)

]
, (3.5)

V = ∑
s<s′

∑
~n

Cs,s′ : b†
s (~n)bs(~n)b†

s′(~n)bs′(~n) : . (3.6)

Here ~n(l̂) denotes lattice (unit) vectors along all possible axes in D spatial dimensions. We tune
the coefficients Cs,s′ to produce a bound state of E =−2.0000 MeV (E =−2.2246 MeV) in D = 1
(D = 3), see [12] for more details.

The easiest wave function method consists in fitting the asymptotic cluster wave function to
its expected form. For a finite-range potential (no additional Coulomb interaction) the two cluster
wave function in the asymptotic region r > Rε is given by

Ψ
(p)
` (r) = A` cos(pr+δ`− `π/2) for one dimension, (3.7)

Ψ
(p)
`,m`

(~r) = R(p)
` (r)Y`,m`

(θ ,φ) for three dimensions. (3.8)
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Figure 2: Particle-dimer phase shifts in one dimension calculated using the Lüscher wave function method.
Left panel: Wave function lattice data (crosses) fitted to the asymptotic form (dashed line). Right panel:
Comparison of the phase shifts calculated using the Lüscher periodic-box wave function method and
Lüscher’s finite-volume method with the exact energy spectrum.
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Figure 3: Particle-dimer phase shifts in one dimension calculated using the spherical-wall method in one
dimension with a three-parameter fit. Left panel: Wave function lattice data (crosses) fitted to the asymptotic
form (dashed line). Right panel: Comparison of the phase shifts calculated using the spherical wall method
and Lüscher’s finite-volume method with the exact energy spectrum.

For the one-dimensional case, there is no angular momentum. In this case we use the notation
` = 0 for even parity and ` = 1 for odd parity. In three dimensions in the case of a short range
potential, the radial part R(p)

` (r) of the total wave function has the asymptotic form

R(p)
` (r) = A` [cosδ`(p) j`(pr)− sinδ`(p)n`(pr)] . (3.9)

The angular part of the total wave function is described by the spherical harmonics Y`,m`
(θ ,φ).

In the above equation A` is a normalization coefficient, j` is the spherical Bessel functions of the
first kind and n` of the second. We refer to this method as the Lüscher wave function method.
Fig. 2(a) shows the application for an example case in one dimension. The phase shift analysis
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Figure 4: Particle-dimer phase shifts in one dimension using the second spherical wall approach with R′wall
determined from the non-interacting wave function. Left panel: Wave function lattice data (crosses) fitted
to the asymptotic form (dashed line) for the interacting (blue) and non-interacting (magenta) case. Right
panel: Comparison of the phase shifts calculated using the second spherical wall approach and Lüscher’s
finite-volume method with the exact energy spectrum.

was done for several lattices with N = 6 . . .100 in lattice units. The Lüscher’s energy spectrum
method is applied to all of them and the Lüscher periodic-box wave function method to the lattices
with N = 10, 20, . . .100 in lattice units. The results are shown in Fig. 2(b) to be in a very good
agreement between both methods. This method is applicable in one dimension but is less useful
in three dimensions, where the available computation resources would allow us to compute phase
shifts only at large momenta.

The next method we apply is the spherical wall approach. The lattice version of this method
of calculating phase shifts for point-like particles was introduced by Borasoy et al. [18]. As in
the continuum version [19], the relative separation of the two particles or - as we consider two-
cluster systems - the relative separation between two clusters is confined by a wall boundary of
radius Rwall. The standing wave functions in the box have the same expected asymptotic form
described by the formula (3.8). This method allows for the calculation of several phase shift data
points per one chosen lattice volume, since the variation of the wall radius, Rwall changes the energy
of the standing wave functions. This is especially important for calculations in three dimensions
since, usually, only small volumes are available there. We distinguish between two versions of this
method. The first one is a fit to three parameters: the overall normalization, momentum and phase
shift of the interacting wave functions. Fig. 3 shows the result of this approach for the case N = 50
and Rwall = 20 in lattice units. The results for this method are also in very good agreement with
Lüscher’s energy spectrum method. The phase shifts are calculated for N = 50 and Rwall = 13 . . .23
in lattice units.

Another version of the spherical wall method is a two-parameter fit for the interacting wave
function. The third parameter is obtained from the information of the the non-interacting particle-
dimer wave function. The background for this is the following observation. The wave function on
the lattice vanishes at a slightly larger radius than the one imposed on the lattice (in the given exam-
ple in Fig. 4, the hard wall is set at Rwall = 17, while the wave function is zero at Rwall + ε = 17.901).
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Figure 5: The s-wave (left panel) and p-wave (right panel) scattering phase shifts for fermion-dimer scatter-
ing in three dimensions. We compare phase shifts calculated using the the spherical wall approach with R′wall
determined from the non-interacting wave function with Lüscher’s finite-volume method using the exact
energy spectrum.

However, the difference in the value of ε between the interacting and the non-interacting system
is negligible. Therefore, we use the information from the non-interacting wave functions to fix
R′wall = Rwall + ε and have two free parameters (p and δl) in the interacting system. The phase
shifts shown in the right panel of Fig. 4 use the same data set as in Fig. 3, namely N = 50 and
Rwall = 13 . . .23 in lattice units. Therefore, the results are basically the same as for the three pa-
rameter spherical wall approach, but have smaller confidence intervalls which is important in three
dimensions.

For the three-dimensional fermion-dimer calculation, this method turned out to be the most
promising one of the four possible approaches explored in the one dimensional system. Therefore
the results in three dimensions are only shown for this method. In Fig. 5, we present the results
for a three-dimensional fermion-dimer scattering process. The squares represent lattice results
for the s-wave and p-wave scattering phase shifts using the adiabatic projection method with τ =

0.37 and the spherical wall method. They are compared with the exact lattice results obtained
using Lüscher’s method (circles). Hereby, Lüscher’s method was applied to the energies of the
microscopic Hamiltonian H. The lines correspond to continuum results obtained via the STM
equation (dashed) and the fits of the data on the lattice to an effective range expansion (solid),

p2`+1 cotδ`(p) =− 1
a`

+
1
2

r` p2 +O(p4) . (3.10)

The last method is an attempt to calculate scattering information for very low energies using
small volumes. This is a disadvantage of the spherical wall method since the radius of the wall
has to at most half to the lattice size. This results in very small volumes in three dimensions. In
order to probe for low energies we have to choose more complicated boundary conditions. Thus,
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Figure 6: Particle-dimer phase shifts in one dimension with the spherical wall and an attractive well poten-
tial. Left panel: Wave function lattice data (crosses) fitted to the asymptotic form (dashed line). Right panel:
Comparison of the phase shifts calculated using the approach based on the combination of the spherical wall
and attractive well with Lüscher’s finite-volume method using the exact energy spectrum.

we add an attractive well potential in front of the hard wall boundary. The depth of the well is an
adjustable continuous parameter. The example shown in Fig. 6 corresponds to the case of N = 30,
Rwall = 13 and Rwell = 12 in lattice units. The phase shifts shown in the right panel of Fig. 6 are
calculated for N = 50, Rwall = 23 and different well depths. The agreement to the Lüscher’s energy
spectrum method - also for small energies - is very good. As the attractive potential becomes deeper
the wave function corresponds to a wave function in an effectively larger box and through this to a
wave function with smaller energy. However, the wave function is also getting distorted in the outer
asymptotic region such that at some point the expected asymptotic form according to Eq. (3.7) is
not a good fit function anymore.

4. Summary

In this report we argued that the adiabatic Hamiltonian reduces to a simple position-space free
cluster Hamiltonian in the asymptotic region. This allows us to avoid the computation of the energy
spectrum and use the Lüscher’s method which is prone to potentially large errors. The phase shifts
are calculated using the cluster wave function attained from the adiabatic Hamiltonian instead. We
presented four different variations of the wave function techniques to calculate scattering informa-
tion. The first one is a simple matching of the wave function to its expected form in the asymptotic
region according to Eq. (3.7). The next two methods involve imposing a hard boundary on the
relative separation of the clusters. The difference between the two is the use of the information
from the non-interacting wave function. If this information is used to determine the radius where
the wave function vanishes R′wall, the fit of the interacting wave function is more stable because of
a reduced number of fitting parameters. The last method makes use of more complicated bound-
ary conditions, namely an additional attractive well in front of the hard wall boundary. A great
advantage of this method is that it allows to compute phase shifts for very low energies in small
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boxes. However, this additional potential also distorts the wave functions which is a disadvantage
and results in potentially large confidence intervals.
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