
P
o
S
(
C
D
1
5
)
1
2
3

Nuclear electric dipole moment of light nuclei in the
Gaussian expansion method

Nodoka Yamanaka∗

iTHES Research Group, RIKEN, 2-1 Hirosawa, 351-0115 Saitama, Japan
E-mail: nodoka.yamanaka@riken.jp

Emiko Hiyama
RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, 351-0115 Saitama, Japan
E-mail: hiyama@riken.jp

The nuclear electric dipole moment is a very sensitive probe of CP violation beyond the standard
model, and for light nuclei, it can be evaluated accurately using few-body calculational methods.
In this talk, we present the deuteron, 3He, 3H, 6Li, and 9Be electric dipole moments calculated
using the Gaussian expansion method with a realistic nuclear force, and assuming the one-meson
exchange model for the P, CP-odd nuclear force. We then give future prospects for models beyond
the standard model such as the supersymmetry.

The 8th International Workshop on Chiral Dynamics, CD2015 ***
29 June 2015 - 03 July 2015
Pisa,Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:nodoka.yamanaka@riken.jp
mailto:hiyama@riken.jp


P
o
S
(
C
D
1
5
)
1
2
3

Nuclear EDM of light nuclei in the Gaussian expansion method Nodoka Yamanaka

1. Introduction

It is widely known that the standard model of particle physics has difficulty in explaining
the matter abundance of the Universe. The standard model prediction of the matter abundance is
in great deficit compared with the observed matter-photon ratio. This fact strongly suggests the
existence of additional source(s) of large CP violation beyond the standard model.

To search for new CP violation, we have a very attractive experimental observable: the electric
dipole moment (EDM) [1, 2, 3, 4, 5, 6, 7, 8, 9]. The EDM is the permanent polarization of a system,
and it is odd under parity transformation and time reversal (or equivalently CP). The EDM can be
measured in many systems such as neutrons [10], atoms [11, 12], molecules [13, 14], muons [15],
and many theoretical candidates beyond the standard model have been investigated so far.

In this talk, we focus on the nuclear EDM. The nuclear EDM has many advantages. First, it
is known that the CP-odd effect is enhanced due to the nuclear many-body effect [16, 17, 18]. It
is also known that the standard model contribution is very small [19, 20, 21, 22, 23, 24, 25, 26].
Finally, the experimental measurement of nuclear EDM using storage ring is in preparation [27,
28, 29, 30, 31, 32].

To calculate the EDM of light nuclei, we use the Gaussian expansion method [33]. In this
framework, light nuclei such as the deuteron, 3He, 3H, and 4He can be treated ab initio, i.e. by
solving directly the Schrödinger equation of few-nucleon systems [34, 35]. Heavier systems such
as 6Li and 9Be can also be calculated using the same method assuming the cluster approximation
[36, 37, 38], which treats the α cluster as a single particle.

We now give the plan of this talk. We first introduce the nuclear EDM and the mechanism to
generate it. We then review the Gaussian expansion method and present the result of the ab initio
calculations of the EDM of the deuteron, 3H, and 3He nuclei. In Section 5, we present the frame-
work and the result of the calculation of the EDM of 6Li and 9Be in the cluster approximation. We
finally show the prospect for the search of new physics beyond the standard model and summarize
our talk.

2. Nuclear electric dipole moment and CP-odd nuclear force

The nuclear EDM is generated in the presence of P and CP-odd nucleon level processes. The
leading contributions are the intrinsic EDM of the nucleon and the P, CP-odd nuclear force1. The
nucleon EDM contribution to the nuclear EDM is given by

d(Nedm)
A =

A

∑
i=1

di〈A |σiz |A〉 ≡ 〈σp〉A dp + 〈σn〉A dn, (2.1)

with A the number of nucleons of the nucleus and |A〉 the nuclear wave function polarized in the
z-direction. The proton and the neutron EDMs are given by dp and dn, respectively. The nuclear
EDM generated by the P, CP-odd nuclear force is

d(pol)
A =

A

∑
i=1

e
2
〈 Ã |(1+ τ

z
i )Riz | Ã〉, (2.2)

1The meson-exchange current contribution to the nucleon EDM is small [39, 40], although that to the magnetic
moment is not small for some nuclei [41].

2



P
o
S
(
C
D
1
5
)
1
2
3

Nuclear EDM of light nuclei in the Gaussian expansion method Nodoka Yamanaka

with τ
z
i the isospin Pauli matrix, and Riz the coordinate of the nucleons in the nuclear center of mass

frame. Here | Ã〉 is the nuclear wave function polarized in the z-axis, including a small component
of opposite parity states. It is to be noted that the permanent polarization of the nucleus is realized
only if there is a mixing of opposite parity states.

To generate such parity mixing and the nuclear polarization, the P, CP-odd nuclear force is
necessary. In this work, we model the CP-odd nuclear force by the CP-odd one-pion exchange
N −N interaction [39, 42, 43, 44]. The CP-odd Hamiltonian used in our work is given by

HP/T/ =
1

2mN

[
Ḡ(0)

π τ1 · τ2 σ− ·∇Yπ(r)

+Ḡ(1)
π (τz

1 σ1 − τ
z
2 σ2) ·∇Yπ(r)

+Ḡ(2)
π (3τ

z
1τ

z
2 − τ1 · τ2)σ− ·∇Yπ(r)

]
, (2.3)

where Ḡ(i)
π ≡ gπNN ḡ(i)

πNN (i = 0,1,2) is the CP-odd coupling constant, generated by new physics
beyond the standard model. We consider these unknown CP-odd couplings as small. The radial part
of the CP-odd Hamiltonian is made of the derivative of the Yukawa function Yπ(r) ≡ e−mπ r

4πr . Due
to the small CP violation, it is sufficient to consider the nuclear EDM in the linear approximation:

d(pol)
A = ∑

i
a(i)A,πḠ(i)

π . (2.4)

The linear coefficients a(i)A,π depend only on the nuclear structure, and can be calculated using the
Gaussian expansion method [18].

3. Gaussian expansion method

We now very briefly introduce the Gaussian expansion method [33]. The general wave func-
tion of the three-body system is given as a superposition of Gaussian functions:

ΨJM,T Tz = ∑
c

∑
T

∑
Σ

∑
Λ

∑
nl,NL

C(c)
nl,NL,Σ,T Sα

[
[φ

(c)
nl (rc)ψ

(c)
NL(Rc)]Λ χΣ

]
J,M

ηT,Tz . (3.1)

Here the operator Sα denotes the symmetrization (antisymmetrization) between the identical bosons
(fermions). The spin and isospin functions are denoted by χΣ and ηT,Tz , respectively.

The radial components of the wave function φnlm(r), ψNLM(R) are given by

φnlm(r) = rl e−(r/rn)
2
Ylm(r̂) ,

ψNLM(R) = RL e−(R/RN)
2
YLM(R̂) , (3.2)

where the Gaussian range parameters obey the following geometric progression:

rn = r1an−1 (n = 1−nmax) ,

RN = R1AN−1 (N= 1−Nmax). (3.3)

In our calculation, we take the angular momentum space l,L,Λ≤ 2, which shows good convergence
of the calculation.
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Table 1: Results of the ab initio calculation of the EDM of the deuteron, 3H, and 3He nuclei. The unit of the
linear coefficients of the CP-odd N −N coupling a(i)π (i = 0,1,2) is 10−2e fm. The symbol − denotes that
the result cancels in our setup. The coefficient of the neutron EDM calculated in the chiral analysis [46] was
also added for comparison.

〈σp〉 〈σn〉 a(0)π a(1)π a(2)π

n 0 1 1 − −1
2H 0.914 0.914 − 1.45 −
3He -0.04 0.89 0.59 1.08 1.68
3H 0.88 -0.05 −0.59 1.08 -1.70

4. Test of ab initio calculations (2H, 3He, and 3H nuclei)

We have calculated the EDM of the deuteron, 3H, and 3He nuclei to test the ab initio calcu-
lation using the Gaussian expansion method. As the Hamiltonian, we have used the Argonne v18
interaction [45] and the one-pion exchange CP-odd potential of Eq. (2.3). The three-body force
has not been considered. The results are shown in Table 1.

For the deuteron, the result is quite in good agreement with the values of Refs. [39, 47, 48].
We also note that the coefficients of the intrinsic nucleon EDM contribution for the deuteron are
smaller than one, due to the d-wave component. For the EDMs of 3He and 3H, our result agrees
again with the chiral effective field theory calculations of Refs. [49, 50]. The agreement with
previous works certifies that the Gaussian expansion method works well as an ab initio method.

5. Results of the calculation in the cluster approximation (6Li and 9Be nuclei)

In the cluster approximation, 6Li and 9Be are considered as α +n+ p [51, 52] and α +α +n
[53, 54, 55] three-body systems, respectively. The CP-even effective α −N and α −α interactions
are obtained from the fit which reproduces the low energy scattering phase shift of the correspond-
ing systems [56, 51]. We use the Argonne v8′ interaction [45] for the N −N interaction which is
required for the calculation of the 6Li nucleus.

The effect of the antisymmetrization for the N −α and α −α subsystems is approximated by
the orthogonality condition model (OCM) [57, 58, 59]. It is possible to project out the forbidden
states by including the following term in the Hamiltonian [52]

VPauli = lim
λ→∞

∑
f

λ |φ f (rαx)〉〈φ f (r’αx)|. (5.1)

In our calculation, λ was taken to 104 MeV.
The CP-odd α −N interaction is obtained by the folding

Vα−N(r) =
Ḡ(1)

π

2mN

∫
d3r′ρα(r′)∇Yπ(r− r′), (5.2)

where the nucleon number density of the α cluster is ρα(r) = 4
b3π3/2 e−r2/b2

with b = 1.358 fm. The
shape of the folding potential is shown in Fig. 1. The isoscalar and isotensor CP-odd nuclear forces
cancel after the folding. Moreover, all CP-odd nuclear forces cancel for the α −α system.
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Figure 1: The folded CP-odd α −N potential. The CP-odd N −N potential is also shown for comparison.
We have factored out the unknown coupling constant Ḡ(1)

π .

Table 2: Results of the EDM calculations of the cluster approximation. The unit of the linear coefficients
of the CP-odd N −N coupling a(i)π (i = 0,1,2) is 10−2e fm. The symbol − denotes that the result cancels in
our setup.

〈σp〉 〈σn〉 a(0)π a(1)π a(2)π

6Li 0.88 0.88 − 2.8 −
9Be − 0.75 − 1.7 −

The result of the calculation of the EDM of the 6Li and 9Be nuclei in the cluster approximation
is shown in Table 2. The EDM of 6Li is remarkably sensitive to the isovector CP-odd one-pion
exchange nuclear force. It is made of two comparable contributions, namely the EDM of the
deuteron subcluster and the polarization due to the CP-odd α −N interaction. The 6Li EDM is two
times more sensitive than the deuteron EDM.

For 9Be, its sensitivity to the isovector CP-odd nuclear force is comparable to that of the
deuteron. This time, the EDM is only due to the CP-odd α −N interaction. Its value coincides
with the same polarization effect in 6Li.

6. Impact to new physics beyond the standard model

We now discuss the prospects for the search of new physics beyond the standard model. Let
us first discuss the sensitivity to supersymmetric models. The supersymmetric models contribute
to the fermion EDM at the one-loop level, with supersymmetric particles in the intermediate state
[5, 60]. If the sensitivity of O(10−29)e cm is reached in the planned EDM experiment using storage
rings, we can probe the supersymmetry breaking mass scale at the level of 10 TeV.

In models generating a 4-quark interaction with the exchange of new bosons, the mass scale of
10 TeV to PeV can be probed. This is the case of the Left-right symmetric model [61] or leptoquark
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model [62].
Other interesting targets are models contributing to the Barr-Zee type diagram. As examples,

we have the Higgs doublet models [63, 64, 65, 66, 67, 68, 69, 70], or the R-parity violating super-
symmetric models [9, 71, 72, 73, 74]. The prospective experimental sensitivity can probe the new
physics mass scale of

√
YqYQ PeV, with Yq and YQ the couplings between the exchanged new boson

and fermions.

7. Summary

In this talk, we have presented the results of the calculation of the EDM of 2H, 3He, 3H, 6Li,
and 9Be using the Gaussian expansion method. The results show that 6Li is sensitive to the CP-odd
nuclear force due to the constructive interference between the CP-odd α −N interaction and the
deuteron EDM. The planned experiment using storage ring has a sensitivity of O(10−29)e cm, and
we expect it to unveil the CP violation of new physics beyond the TeV scale.
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