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The study of few-nucleon system is interesting and important. It gives a microscopic description

of complex systems within the framework of modern concepts of nucleon- nucleon and many-

body interactions. Using the muon capture process is an ideal tool to study few-nucleon systems.

In this work we plan to investigate theµ + d → ν + n+ n capture reaction. This reaction is

interesting for several reasons. First of all, it offers a testing ground for the nuclear wave functions,

which for any nucleon-nucleon (NN) forces can be constructed for such light systems with great

accuracy. This reaction, is treated as the decay of the corresponding muonic atom, with the muon

initially on the lowest K shell. The muon binding energy in this atom can be safely neglected and

in the initial state we deal essentially with the deuteron and muon at rest. The general formalism

for dealing with electroweak reactions on the deuteron will be presented.
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1. Introduction

We present our results for the muon capture reaction:µ− + d → νµ + n+ n. Muon capture
on light nuclei is one of the best known examples of the weak interaction. Studying these kind of
processes enables us to understand the weak nuclear current operator, since ground and scattering
states of few-nucleon systems are under control. Typically we study the decay of the muonic atom
and deal with hyperfine structure of the atomic levels. We will concentrate on the nuclear matrix
elements of the corresponding weak current operator calculated in the momentum space within
partial wave decomposition scheme.
In the current operator apart from the relatively well known single nucleon contributions, the two-
nucleon parts (generated by various meson exchange) play an important role. Their details are not
well known and several models should be considered [1]. We will employ various models of NN
and 3N forces, such as the Bonn B [2] or chiral NNLO potentials [3].
Additionally, we will be able to use for the first time the so-called "improved" chiral nucleon-
nucleon potentials from the Bochum-Bonn group [4] for the µ + d → ν + n+ n capture reaction,
we will show our predictions for all the available five orders of the chiral expansion and for all
the five regulators at each order. The estimate of the total decay rates and differential capture
rates as a function of the relative neutron-neutron momentum will be presented. Our results with
the single nucleon currents look already very promising and we hope for the improvement in the
description of the experimental data, when dominant two-nucleon current operators are included in
our framework.

2. The single nucleon current operator

The transition amplitude driven by the Fermi form of the interaction Lagrangian (see for exam-
ple Ref. [5]) and leads to a contraction of the leptonic (Lλ ) and nuclear (N λ ) parts in theS-matrix
element,Sf i [6]:

Sf i = i(2π)4
δ

4(
P′−P

) G√
2

Lλ N λ , (2.1)

whereG = 1.14939×10−5GeV−2 is the Fermi constant (taken from Ref. [1]), andP (P′) is the
total initial (final) four-momentum. The well known leptonic matrix element

Lλ =
1

(2π )3 ū(pν ,mν)γλ (1− γ5)u(pµ ,mµ) ≡ 1

(2π )3 Lλ (2.2)

is given in terms of the Dirac spinors (note that we use the notation and spinor normalization of
Bjorken and Drell [7]).

The nuclear part is the essential ingredient of the formalism, and is written as

N λ =
1

(2π )3 〈Ψ f Pf mf | jλ
w | Ψi Pi mi 〉 ≡

1

(2π )3 Nλ . (2.3)

which jλ
w is the nuclear weak current operator acting in the matrix element between the initial and

final nuclear states as shown in Fig.1. The matrix element of the nuclear weak current operator
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jλ
w between the initial and final nuclear states depend on the nucleon incoming (p) and outgoing

momentum (p ′) and nucleon spin projectionsm andm′:

〈1
2

m′ | 〈p ′ | jλ
w(1) | p〉 | 1

2
m〉=

ū(p ′,m′)
((

gV
1 −2M gV

2

)
γ

λ +gV
2

(
p+ p′

)λ

+gA
1γ

λ
γ

5 +gA
2

(
p− p′

)λ
γ

5
)

τ−u(p,m) , (2.4)

containing nucleon weak form factors,gV
1 , gV

2 , gA
1 , andgA

2 , which are functions of the four-momentum
transfer squared,(p′− p)2. We neglect the small difference between the proton massMp and neu-
tron massMn and introduce the average “nucleon mass”,M ≡ 1

2 (Mp +Mn). Working with the
isospin formalism, we introduce the isospin lowering operator, asτ− = (τx− iτy)/2.

Figure 1: General diagram for muon capture on the deuteron. The details of the lepton-nucleus interaction
are hidden inside the ellipse.

3. Results

The kinematics of this processes can be treated without any approximations both relativisti-
cally and nonrelativistically. Note that here, we use the avarage “nucleon mass” in the kinematics
and in solving the Lippmann-Schwinger equation.

In order to evaluate the phase space factor in terms of the relative momentum, The decay rate
follows fromSf i in a standard way [8] and for the capture process, it is given by

Γd =
1
2

G2 1
(2π)2

(
M′

dα
)3

π

π∫
0

dθpν
sinθpν

2π∫
0

dφpν

Emax,nn
ν∫
0

dEνE2
ν

1
2

Mnp

π∫
0

dθpsinθp

2π∫
0

dφp
1
6 ∑

md,mµ

∑
m1,m2,mν

∣∣∣Lλ (mν ,mµ )Nλ (m1,m2,md )
∣∣∣2 , (3.1)

where the factor
(M′

dα )3

π
stems from theK-shell atomic wave function,M′

d = MdMµ

Md+Mµ
andα ≈ 1

137

is the fine structure constant.
Our predictions shown in Fig.2 calculated with different nucleon-nucleon potentials lie very

close to each other. We take the older Bonn B potential [2], the AV18 potential [9] and five different
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parametrizations of the chiral next-to-next-to-leading order (NNLO) potential from the Bochum-
Bonn group [10]. The corresponding totalF = 1

2 rates vary only by about 2%, while the totalF = 3
2

rates are even more stable.
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Figure 2: Differential capture ratedΓF
d /dp of theµ−+2 H→ νµ +n+n process calculated using standard

PWD with various nucleon-nucleon potentials: the AV18 potential [9] (solid curves), the Bonn B potential
[2] (dashed curves) and the set of chiral NNLO potentials from Ref. [10] (bands) forF = 1

2 (left panel) and
F = 3

2 (right panel) as a function of the relative neutron-neutron momentump. Note that the bands are very
narrow and thus appear practically as a curve. All the partial wave states withj ≤ 4 have been included in
the calculations with the single nucleon current operator containing the relativistic corrections. Note that the
average "nucleon mass" is used in the kinematics and in solving the Lippmann-Schwinger equations.

In Table1 we show results for the doublet and quadruplet capture rates calculated for all the
available five orders of the chiral expansion and for all the five regulators at each order (the so-
called “improved”chiral nucleon-nucleon potentials from the Bochum-Bonn group [4]).

4. Summary

We show predictions for the differential and total capture rates calculated with quite many
different nucleon-nucleon potentials and the single nucleon current operator. The calculation also
have done for the quadruplet differential and doublet capture rate. Finally we show for the first
time results based on the new, improved chiral potentials from the Bochum-Bonn group [4]. These
new nucleon-nucleon forces are available for five orders of the chiral expansion and (at each order)
with five different regularizations. Our results demonstrate a very welcome property of the new
chiral forces since the range of predictions obtained at a given order but for five different regulators
becomes very narrow when going to higher and higher orders of the chiral expansion. The spread
of the results at N4LO is below 0.5 % !
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Table 1: Doublet (F = 1/2) and quadruplet (F = 3/2) capture rates for theµ−+2 H→ νµ +n+n reaction
calculated with the improved chiral nucleon-nucleon potential [4] for different orders of the chiral expansion
and the single nucleon current operator with the relativistic corrections (RC). Plane wave results (PW) and
results obtained with the rescattering term in the nuclear matrix element (full) are shown. The neutron mass
is used in the kinematics and in solving the Lippmann-Schwinger equations. All the partial waves with the
total 2N angular momentumj ≤ 6 are employed. In the last column the spread of the full results forF = 1/2

at the given order,∆Γ1/2
d ≡ Γ1/2

d max−Γ1/2
d min, is also presented.

Capture rateΓF
d in s−1

F = 1/2 F = 3/2

nucleon-nucleon force PW full PW full ∆Γ1/2
d in s−1

LO with R= 0.8 fm 355.1 396.0 9.32 11.26
LO with R= 0.9 fm 357.1 397.4 9.13 11.04
LO with R= 1.0 fm 359.1 398.4 8.94 10.89 3.3
LO with R= 1.1 fm 361.1 398.9 8.78 10.59
LO with R= 1.2 fm 362.9 399.2 8.63 10.38

NLO with R= 0.8 fm 352.9 384.2 9.89 11.53
NLO with R= 0.9 fm 353.8 385.8 9.88 11.53
NLO with R= 1.0 fm 354.6 387.2 9.85 11.51 5.7
NLO with R= 1.1 fm 355.5 388.6 9.82 11.48
NLO with R= 1.2 fm 356.3 389.8 9.77 11.45

N2LO with R= 0.8 fm 354.2 385.0 9.83 11.60
N2LO with R= 0.9 fm 354.9 386.1 9.84 11.56
N2LO with R= 1.0 fm 355.5 387.2 9.84 11.53 4.3
N2LO with R= 1.1 fm 356.0 388.3 9.83 11.52
N2LO with R= 1.2 fm 356.6 389.3 9.82 11.50

N3LO with R= 0.8 fm 353.0 386.8 9.70 11.44
N3LO with R= 0.9 fm 352.8 386.4 9.74 11.48
N3LO with R= 1.0 fm 353.1 385.2 9.81 11.52 3.6
N3LO with R= 1.1 fm 353.8 384.3 9.91 11.58
N3LO with R= 1.2 fm 354.5 383.2 10.05 11.66

N4LO with R= 0.8 fm 353.1 385.5 9.77 11.51
N4LO with R= 0.9 fm 354.0 386.1 9.78 11.50
N4LO with R= 1.0 fm 354.8 386.3 9.81 11.50 1.7
N4LO with R= 1.1 fm 355.4 385.6 9.88 11.54
N4LO with R= 1.2 fm 355.8 384.6 10.00 11.61
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