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1. Introduction

A single(double) Dalitz decay proceeds through the reaction P → γ∗γ(∗) (P = π0,η ,η ′)
after the conversion of the virtual photon(s) into a lepton pair(s). Since P has an internal structure
a transition form factor (TFF) comes into play encoding the QCD dynamics effects occurring in the
Pγ∗γ(∗) vertex. The singly virtual TFF, which depends on the transferred momentum to the virtual
photon, can be parameterized by means of Vector Meson Dominance (VMD) after the (dispersive)
spectral representation in q2 (with q2 the photon virtuality)

FPγγ∗(q2) =

∞∫
s0

ds
ρ(s)

s−q2− iε
, (1.1)

with s0 the threshold for physical intermediate states and when the contribution to the spectral
function of a single narrow-width resonance reduces to ρ(s) ∝ πδ (s−M2

eff), which yields

FPγγ∗(q2) =
FPγγ(0)

1− q2

Λ2

, (1.2)

where Λ(= M2
eff) accounts for the position of the pole on the real q2 axis. However, this description

breaks down for q2 = Λ2, corresponding to an on-shell intermediate resonance. A common way
to cure this limitation is by incorporating width effects into the propagator, Γ(q2), whose standard
form for more than one single particle contribution reads [1]

FPγγ∗(q2) = FPγγ(0)

(
∑

V=ρ,ω,φ

gPV γ

2gV γ

)−1

∑
V=ρ,ω,φ

gPV γ

2gV γ

M2
V

M2
V −q2− iMV ΓV (q2)

, (1.3)

where gPV γ and gV γ are, respectively, the PV γ and V γ couplings while the expression for the

width reads ΓV (q2) = ΓV
q2

M2
V

σ3(q2)

σ3(M2
V )

with σ(s) a kinematical factor i.e. σ(q2) =
√

1−4M2
π/q2 for

V = ρ . For our study, we benefit from the works of refs. [2, 3], where the current experimental
data of the modulus of the space-like TFF γ∗γ →P [5] have successfully been accommodated in
a simple way through the use of Padé approximants [6], to represent the modulus of the time-like
partner transition P → γ∗γ . Our main goal is to predict the spectra and the branching ratio of the
single and double Dalitz decays we are interested in. Other different parameterizations existing
in the literature are based on resonance chiral theory [7, 8] and on dispersive techniques [9, 10],
among others [11, 12, 13, 14, 15, 16, 17, 18].

In this talk we address the following topics: in section 2, our description of the modulus transi-
tion form factor in the time-like energy region is discussed and compared with current experimental
determinations. In sections 3 and 4 we tackle the main features of the single and double Dalitz de-
cays under evaluation. Section 5 is devoted to the conclusions including our central branching ratio
predictions.

2. Transition form factor

Padé approximants (PA) are meromorphic functions, in our case ratios of a polynomial of
order N and a polynomial of order M, constructed in such a manner that their Taylor expansion
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coincide with that of the (unknown) function to be approximated up to order O(q2)M+N+1

PN
M(q2) =

∑
N
i=0 ai(q2)i

∑
M
j=0 b j(q2) j

. (2.1)

We argue that eq. (1.2) can be seen as the P0
1 (Q

2) PA to the TFF that is, the first element of the
general sequence given by eq. (2.1). Despite the fact that the convergence of the sequence to the
function we want to approximate is only ensured for a special kind a functions (e.g. functions of
Stieltjes type and/or meromorphic) a pattern may be inferred from data. For instance, the excellent
performance of PAs in ref. [2, 3, 4, 19] seems to indicate that the convergence is ensured at the
energies we are exploring. On the other hand, one cannot extend the TFF as parameterized for
describing the space-like energy regime to reproduce the entire TFF in the time-like since this
region may contain isolated poles and branch cuts. Strictly speaking, there is no a priori reason
why PAs should work above the branch cut developed at the ππ threshold. We argue that the
imaginary part of the ππ at threshold is subleading [19] and, therefore, the absolute value of the
TFF is well approximated by a real meromorphic function which has nothing but isolated poles. In
this scenario, PAs are an excellent approximation tool. In our description, PAs can be used as long
as lim

N→∞
f (q2)−PN

M(q2) = 0 ∈ D is satisfied provided that the energy domain D does not contain

any pole. For the case that concerns us, PAs represent the modulus of the TFF of the Pγ∗γ vertex
after fitting the corresponding experimental data in the space-like region. The transition π0→ γ∗γ
occurs at very low-momentum transfer and can be expressed by the Taylor expansion of eq. (2.1)

Fπ0γ∗γ(q
2) = Fπ0γ∗γ(0)

(
1+bπ

q2

m2
π

+ cπ

q4

m4
π

+O(q6)

)
, (2.2)

with Fπ0γγ(0) fixed from the experimental width to two photons while the values of the low energy
parameters, slope (bπ ) and curvature (cπ ), are borrowed from the analysis of ref. [2]. For the η ,
in fig. 1 (up panel) we provide a graphical account of the modulus of the TFF (normalized to
unity at the origin) in the time-like energy regime after extrapolating the parameterization of the
space-like fits as obtained in ref. [3]. The comparison with the current experimental determinations
from η → e+e−γ (black circles) and η → µ+µ−γ (green squares) obtained, respectively, by the
A2 and NA60 collaborations [20] is shown in nice agreement. The description of the TFF of the
η ′ through PAs is more delicate since, in this case, the pole lies within the available phase space
(see right panel of table 4 of ref. [3]) and, hence, we cannot describe the whole transition by the
use of PAs. We, then, proceed to match the prediction as given by PA to eq. (1.3) by letting
the coupling gργ to float, whose value will precisely be inferred when performing the matching.
Therefore, the representation below the matching point is given by the PA while above by eq. (1.3)
with the corresponding value for the gργ coupling. We have chosen the values of the rest of the
required couplings from table 4 of ref. [4] and then we have performed the matching point at the
latest experimental data point fixed at 0.75 GeV (see ref. [22] for further details). This exercise
is graphically represented in fig. 1 (down panel) and compared, with very good agreement, with
the current data reported by BESIII collaboration [21]. Regarding the TFF of double virtuality,
which depends on both photon virtualities, is commonly described by the factorization approach
FPγ∗γ∗(q2

1,q
2
2) = FPγ∗γ(q2

1,0)FPγγ∗(0,q2
2), where the right-hand functions are given by the singly

virtual TFF we have already described. However, this ansatz, though reasonable since we lack
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Figure 1: up: Representation of the modulus squared of the TFF (normalized to unity at the origin) of
the η meson in the time-like as given by the PAs P5

1 (
√

s) and P2
2 (
√

s) (red solid and black dashed curves
respectively) together with the one sigma error band (light-blue and light gray respectively). down: Time-
like description of the η ′ TFF as given by P6

1 (
√

s) for the region below the matching point at 0.75 GeV
(blue solid curve) and by eq. (1.3) above (blue dashed curve). The error bands include also the uncertainty
associated of the partial decay width to two photons

experimental information in this case, induce a q−4 term violating the OPE limit which tell us
lim

q2→∞

F(q2
1,q

2
2)∼ q−2 [23]. We can cure this fact by reconstructing the doubly virtual TFF through

the use of the so-called Chisholm approximants (CA) [6, 24] (see also refs. [25, 26]), a bivariate
generalization of the PAs, whose lowest order bivariate reads

P0
1 (q

2
1,q

2
2) =

a0,0

1+ b1,0

M2
P
(q2

1 +q2
2)+

b1,1

M4
P

q2
1q2

2

, (2.3)

where a0,0 is fixed from the experimental decay width to two photon to the value of the TFF at the
origin of energies, b1,0 is the slope of the singly virtual TFF obtained in refs. [2, 3], while b1,1 would
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correspond to the doubly virtual slope which for our predictions we vary, as a conservative estimate,
from b1,0 = 0 respecting the OPE to b1,2 = 2b2

1,0, far from the factorization result b2
1,1 = b2

1,0. For
our final predictions (preliminary) we have considered both the standard factorization approach as
well as the CA in a combined weighted average way. See also ref. [27] for a recent description of
the TFF of double virtuality of the η meson.

3. Single and double Dalitz decays

R. Dalitz postulated in 1951 the decay π0→ e+e−γ [28]. The energy release in the process is
small and the TFF effects are tiny as can be seen in fig. 2 (left panel) where we display the decay
distribution as function of the e+e− invariant mass as compared to the pure QED calculation (see
ref. [29] for QED radiative corrections on this process). The decay is mainly dominated by the
very low-energy region of the spectrum where the effect of TFF is negligible. A similar pattern is
followed by the single Dalitz decays η → e+e−γ and η ′→ e+e−γ . On the contrary, when muons
come up in the final state, the effects of the TFF appear to be much notorious since the decay width
is more homogeneously distributed. Double Dalitz decays follow basically the same trend. Here we
can differentiate between two scenarios depending whether the final state dilepton pairs are equal.
As a matter of example, in figs. 2 and 3 we provide the decay distribution for η → e+e−e+e− as
a function of one di-electron invariant mass of the direct diagram (right panel in fig. 2) as well as
the distribution of the decay η ′→ e+e−µ+µ− (down panel in fig. 3) as a function of the angle φ

formed between the planes of the two di-lepton pairs (described in the upper panel of fig. 3). In
the full electronic decay of the η we show, in particular, the contribution from the direct diagram
(green solid curve), the curve of the exchange diagram expressed in terms of the former di-electron
invariant mass of the direct diagram (red dotted curve), the interference term (which is destructive
and represented by the blue dotted curve) and the total decay rate distribution (black dotted line)
whereas from the e+e−µ+µ− mode of the η ′ we learn that the decay is most probable when the
two planes are perpendicular (i.e. when φ = π/2).
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Figure 2: Decay distribution for π0→ e+e−γ (left) and for η→ e+e−e+e− (right) as a function of the e+e−

invariant mass. The exchange diagram and the interference term as expressed in the figure of the right have
required a Monte Carlo integration.
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Figure 3: Decay distribution for η ′→ e+e−µ+µ− (down) shown as a function of the angle φ formed by the
planes of the two di-lepton pairs (up).

4. Conclusions

We predict the single and double Dalitz decays P → `+`−γ and P → `+`−`+`− (P =

π0,η ,η ′ ; ` = e or µ) benefited from a data-driven description of the modulus of the transition
form factor P → γ∗γ(∗) which is nicely supported by current experimental data as displayed in
fig. 1. We have seen that the modulus of the TFF is well approximated by a meromorphic func-
tion in terms of rational approximants. From the phenomenological point of view, the processes
involving electrons in the final state are less sensitive to the TFF than when muons come into play
because the decay distribution of the former is vastly dominated by the region of low momentum
transfer. Furthermore, TFF effects are enhanced for η ′ decays because of phase space consid-
erations. Our (preliminary) central branching ratio predictions are displayed and compared with
current experimental status in table 1 (we have shown previous results in ref. [30]). I would like to
further encourage experimental hadron facilities to measure those still unknown observables and
see whether they corroborate our predictions.
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Decay This work Measurement
π0→ e+e−γ 1.169(33)% 1.174(35)%
η → e+e−γ 6.61(59) ·10−3 6.90(40) ·10−3

η → µ+µ−γ 3.27(56) ·10−4 3.1(4) ·10−4

η ′→ e+e−γ 4.38(24) ·10−4 4.69(20)(23) ·10−4

η ′→ µ+µ−γ 0.75(7) ·10−4 1.08(27) ·10−4

π0→ e+e−e+e− 3.37(9) ·10−5 3.34(16) ·10−5

η → e+e−e+e− 2.71(2) ·10−5 2.4(2)(1) ·10−5

η → µ+µ−µ+µ− 3.98(15) ·10−9 < 3.6 ·10−4

η → e+e−µ+µ− 2.38(7) ·10−6 < 1.6 ·10−4

η ′→ e+e−e+e− 2.11(50) ·10−6 unobserved
η ′→ µ+µ−µ+µ− 1.68(47) ·10−8 unobserved
η ′→ e+e−µ+µ− 6.36(1.07) ·10−7 unobserved

Table 1: Our (preliminar) central branching ratio predictions.
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