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Chiral-scale perturbation theory χPTσ has been proposed as an alternative to chiral SU(3)L ×
SU(3)R perturbation theory which explains the ∆I = 1/2 rule for kaon decays. It is based on a low-

energy expansion about an infrared fixed point in three-flavor QCD. In χPTσ , quark condensation

〈q̄q〉vac 6= 0 induces nine Nambu-Goldstone bosons: π ,K,η and a QCD dilaton σ which we

identify with the f0(500) resonance. Partial conservation of the dilatation and chiral currents

constrains low-energy constants which enter the effective Lagrangian of χPTσ . These constraints

allow us to obtain new phenomenological bounds on the dilaton decay constant via the coupling

of σ/ f0 to pions, whose value is known precisely from dispersive analyses of ππ scattering.

Improved predictions for σ → γγ and the σNN coupling are also noted. To test χPTσ for kaon

decays, we revive a 1985 proposal for lattice methods to be applied to K → π on-shell.
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1. Approximate Scale Invariance in Low-Energy QCD

In the low-energy regime of QCD with heavy quarks t,b,c decoupled, the relevance of scale

(dilatation) invariance is determined by the trace anomaly [1]–[4] of the resulting 3-flavor theory:1

θ
µ
µ =

β (αs)

4αs

Ga
µνGaµν +

(

1+ γm(αs)
)

∑
q=u,d,s

mqq̄q . (1.1)

Depending on the infrared behaviour of β , there are only two realistic scenarios (Fig. 1 (A)):

1. If β remains negative and non-zero, possibly diverging linearly at large αs, scale invariance

is explicitly broken by θ
µ
µ being large as an operator. There is no hint of approximate

scale invariance: quantities such as the nucleon mass MN = 〈N|θ µ
µ |N〉 are generated almost

entirely by the gluonic term in (1.1). Then conventional chiral SU(3)L×SU(3)R perturbation

theory χPT3 is the appropriate low-energy effective theory for QCD amplitudes expanded in

powers of O(mK) external momenta and light quark masses mu,d,s = O(m2
K).

2. If β vanishes when αs runs non-perturbatively to an infrared fixed point αIR, the gluonic term

∼ Ga
µνGaµν in (1.1) is absent and the dilatation current Dµ = xν θµν becomes conserved in

the limit of vanishing quark masses:

∂ µDµ

∣

∣

αs=αIR
= θ

µ
µ

∣

∣

αs=αIR
=

(

1+ γm(αIR)
)

∑
q=u,d,s

mqq̄q

→ 0 , SU(3)L ×SU(3)R limit . (1.2)

Although the Hamiltonian preserves dilatations in this limit, the vacuum state is not scale

invariant due to the formation of a quark condensate 〈q̄q〉vac 6= 0. As a result, both chiral

SU(3)L ×SU(3)R and scale symmetry are realized in the Nambu-Goldstone (NG) mode and

the spectrum contains nine massless bosons: π,K,η and a 0++ QCD dilaton σ . Non-NG

bosons remain massive despite the vanishing of θ
µ
µ and have their scale set by 〈q̄q〉vac. The

relevant low-energy expansion involves a combined limit

mu,d,s ∼ 0 and αs . αIR , (1.3)

and leads to a new effective theory χPTσ of approximate chiral-scale symmetry [5, 6]. In

this scenario, the dilaton mass is set by ms, so the natural candidate for σ is the f0(500)

resonance, a broad 0++ state whose complex pole mass has real part . mK [7, 8, 9].

Until now, scenario 1 has been the generally accepted view, but we have observed [5, 6] that χPTσ

offers several advantages over χPT3: it explains the mass and width of f0(500), produces conver-

gent chiral expansions as a result of σ/ f0 being promoted to the NG sector, and most importantly,

explains the ∆I = 1/2 rule for non-leptonic K decays (Fig. 1 (B)).

Because approximate scale symmetry is included, the effective Lagrangian for χPTσ (Sec. 2)

contains several new low-energy constants (LECs) yet to be determined precisely from data. Of par-

ticular interest is the dilaton decay constant Fσ given by m2
σ Fσ =−〈σ |θ µ

µ |vac〉. If Fσ is roughly 100

1Here, Ga
µν is the gluon field strength, αs = g2

s /4π is the strong running coupling, and β = µ2∂αs/∂ µ2 and

γm = µ2∂ lnmq/∂ µ2 refer to a mass-independent renormalization scheme with scale µ .
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Figure 1: (A) Scenarios for the β function in three-flavor QCD, with corresponding low-energy expansions.

In the absence of an infrared fixed point αIR (top diagram), there is no approximate scale invariance and

chiral SU(3)L×SU(3)R perturbation theory χPT3 is relevant at low-energies. If αIR exists (bottom diagram),

quark condensation 〈q̄q〉vac 6= 0 implies that the NG spectrum contains a QCD dilaton σ , and χPT3 must be

replaced by chiral-scale perturbation theory χPTσ . (B) Diagrams for K → ππ decay in lowest-order χPTσ .

The dilaton pole diagram is responsible for the dominant ∆I = 1/2 amplitude.

MeV, scale breaking by the vacuum can generate large masses such as mN ≈ Fσ gσNN (Goldberger-

Treiman relation for dilatons [10]) for mσ small. The imprecise value of Fσ in our previous

work [5, 6] arose from large uncertainties in the phenomenological value of gσNN [11, 12].

We circumvent this difficulty in Secs. 3 and 4. First, we find new constraints on LECs in

the χPTσ effective Lagrangian by requiring full consistency with the dilatation and chiral currents

being conserved in the limit (1.2). These constraints allow us to determine Fσ from the σππ

coupling, whose value is known to remarkable precision from dispersive analyses [7, 8, 9] of ππ

scattering. Then we obtain improved predictions for the non-perturbative Drell-Yan ratio

R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−) at αIR , (1.4)

as well as the σNN coupling.

In Sec. 5, we resurrect an old proposal [13] to apply lattice QCD for K → π on-shell to deter-

mine the couplings g8,27 in Fig. 1 (B). Comments on the validity of χPTσ are reviewed in Sec. 6.

2. Chiral-Scale Lagrangian

For strong interactions, the most general effective Lagrangian of χPTσ is of the form

LχPTσ
= : L

d=4
inv +L

d>4
anom +L

d<4
mass : , (2.1)

where

danom = 4+ γG2(αs) and dmass = 3− γm(αs) (2.2)
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are the respective scaling dimensions of Ga
µνGaµν and q̄q. In lowest order (LO) of the chiral-scale

expansion, we have γm = γm(αIR) and

γG2(αs)≡ β ′(αs)−β (αs)/αs = β ′(αIR)+O(αs −αIR) , (2.3)

so the resulting terms in (2.1) are

L
d=4

inv,LO = {c1K + c2Kσ + c3e2σ/Fσ }e2σ/Fσ ,

L
d>4

anom,LO = {(1− c1)K +(1− c2)Kσ + c4e2σ/Fσ }e(2+β ′)σ/Fσ ,

L
d<4

mass,LO = Tr(MU† +UM†)e(3−γm)σ/Fσ , (2.4)

where

K = 1
4
F2

π Tr(∂µU∂ µU†) and Kσ = 1
2
(∂µσ)2 . (2.5)

As αs → αIR, the gluonic anomaly vanishes, so Lanom = O(∂ 2,M) and we must set c4 = O(M).

Vacuum stability in the σ direction about σ = 0 (no tadpoles) implies

4c3 +(4+β ′)c4 =−(3− γm)
〈

Tr(MU† +UM†)
〉

vac

=−(3− γm)F
2
π

(

m2
K + 1

2
m2

π

)

, (2.6)

so c3 is also O(M). Expanding (2.4) about σ = 0 and U = I yields the σππ coupling

Lσππ =
{[

2+(1− c1)β
′]|∂πππ |2 − (3− γm)m

2
π |πππ |2

}

σ/(2Fσ ) , (2.7)

while the corresponding σππ vertex for an on-shell dilaton is

gσππ =− 1

2Fσ

{

[

2+(1− c1)β
′]m2

σ +2
[

1− γm − (1− c1)β
′]m2

π

}

. (2.8)

3. Effective Energy-Momentum Tensor and its Trace

In any field theory, the energy-momentum tensor can be identified by adding a gravitational

source field gµν(x) coupled to matter fields in a generally covariant fashion. In χPTσ , this amounts

to the substitution

LχPTσ [U,U†,σ ]→ LχPTσ [U,U†,σ ,gµν ] , (3.1)

where the new effective Lagrangian must be constructed in terms of generally covariant operators.

Then the energy-momentum tensor is defined via the variation

θµν(x) = 2

[

δ

δgµν(x)

√−gL [U,U†,σ ,gµν ]

]

gµν=ηµν

, (3.2)

where g = det(gµν) is the determinant of the metric tensor and ηµν is the flat Minkowski metric.

Generalising Donoghue and Leutwyler [14], we obtain the lowest order result

θµν =
[

1
2
F2

π Tr
(

∂µU∂νU†
)

−gµνK
][

c1e2σ/Fσ +(1− c1)e
(2+β ′)σ/Fσ

]

+
(

∂µσ∂νσ −gµνKσ

)[

c2e2σ/Fσ +(1− c2)e
(2+β ′)σ/Fσ

]

−gµνTr
(

MU† +UM†
)

e(3−γm)σ/Fσ −gµνe4σ/Fσ
(

c3 + c4eβ ′σ/Fσ
)

. (3.3)
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The trace of (3.3) involves scale invariant operators like Tr
(

∂µU∂ µU†
)

e2σ/Fσ which obscure the

connection between the scale invariance and a conserved dilatation current Dµ . To remedy this, we

“improve” θµν [15] by adding a term

Iµν =
F2

σ

6
(gµν ∂ 2 −∂µ∂ν)

[

c2e2σ/Fσ +
2(1− c2)

2+β ′ e(2+β ′)σ/Fσ

]

, (3.4)

such that the trace of

θµν

∣

∣

eff
= θµν + Iµν , (3.5)

is given entirely in terms of explicit scale-breaking operators Ld of scale dimension d:

∂ µDµ |eff = θ
µ
µ

∣

∣

eff
= ∑

d

(d −4)Ld . (3.6)

Explicitly, the improved trace is

θ
µ
µ

∣

∣

eff
= β ′

L
d>4

anom − (1+ γm)L
d<4

mass

= β ′{(1− c1)K +(1− c2)Kσ + c4e2σ/Fσ
}

e(2+β ′)σ/Fσ

− (1+ γm)Tr(MU† +UM†)e(3−γm)σ/Fσ . (3.7)

It vanishes in the chiral-scale limit (1.2) only if the low-energy constants associated with d > 4

operators satisfy

c1 = c2 = 1 , for mu,d,s → 0 and αs → αIR , (3.8)

in addition to the condition c4 = O(M) required by tadpole cancellation (2.6). Note that the con-

dition c1 → 1 in (3.8) ensures that chiral currents have vanishing anomalous dimensions. We can

summarise these LO conditions by writing

ci = 1+O(M) , i = 1,2 , (3.9)

where the O(M) term is a linear superposition of O(p2,M) operators and associated LECs.

4. Improved Predictions

An immediate consequence of the constraint (3.9) is that the σππ coupling for an on-shell

dilaton (2.8) takes a particularly simple form

gσππ =− 1

Fσ

[

m2
σ +(1− γm)m

2
π

]

, where −1 ≤ 1− γm < 2 . (4.1)

Since the narrow-width approximation is valid in lowest order χPTσ [6], we have

Γσππ =
|gσππ |2
16πmσ

√

1−4m2
π/m2

σ , (4.2)

and this allows us to obtain bounds on Fσ from dispersive analyses of ππ scattering based on the

Roy equations. For example, the f0/σ ’s mass and width from [7]

mσ = 441+16
−8 MeV , Γσππ = 544+18

−25 MeV , (4.3)
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constrain Fσ to lie within the interval 44 MeV ≤ Fσ ≤ 61 MeV, where we have allowed 1− γm to

vary according to (4.1). For the moment, we assume that NLO corrections are not a problem.

With Fσ fixed in this manner, we can now use the Golberger-Treiman relation for dilatons [10]

to predict the value for the σNN coupling. We find 16 ≤ gσNN ≤ 21, which is somewhat larger

than previous phenomenological determinations [11, 12]. Another important application concerns

σ → γγ , where an analysis [5, 6] of the electromagnetic trace anomaly in χPTσ relates the σγγ

coupling to (1.4):

gσγγ =
2α

3πFσ

(

RIR − 1
2

)

. (4.4)

By fixing gσγγ from the di-photon width Γσγγ = 2.0±0.2 keV [16], we find 2.4 ≤ RIR ≤ 3.1, which

is to be compared with our previous estimate RIR ≈ 5 [5, 6].

5. Proposal to test K → π on the Lattice

The key idea [13] is to keep both K and π on shell and allow O(mK) momentum transfers.

The lowest-order diagrams for the decay K → ππ in Fig. 1 (B) are derived from an effective

weak χPTσ Lagrangian [5, 6]

Lweak = Q8 ∑
n

g8ne(2−γ8n)σ/Fσ +g27Q27e(2−γ27)σ/Fσ +Qmwe(3−γmw)σ/Fσ +h.c. (5.1)

which reduces to the standard χPT3 Lagrangian

Lweak|σ=0 = g8Q8 +g27Q27 +Qmw+h.c. (5.2)

in the limit σ → 0. Eqs. (5.1) and (5.2) contain an octet operator [17]

Q8 = J
µ
13Jµ21 − J

µ
23Jµ11 , J

µ
i j = (U∂ µU†)i j (5.3)

the U -spin triplet component [13, 18] of a 27 operator

Q27 = J
µ
13Jµ21 +

3
2
J

µ
23Jµ11 (5.4)

and a weak mass operator [19]

Qmw = Tr(λ6 − iλ7)
(

gMMU† + ḡMUM†
)

. (5.5)

Powers of eσ/Fσ are used to adjust the operator dimensions of Q8, Q27, and Qmw in (5.1), with octet

quark-gluon operators allowed to have differing dimensions at αIR.

In 1985, it was observed [13] that the isospin-1
2

term Qmw in Eq. (5.2), when combined with the

strong mass term, would be removed by vacuum realignment and therefore could not help solve the

∆I = 1/2 puzzle. In χPTσ , the outcome is different [5, 6] due to the σ dependence of the Qmw term

in Eq. (5.1). Provided there is a mismatch between the weak mass operator’s dimension (3− γmw)

and the dimension (3− γm) of Lmass, the σ dependence of Qmwe(3−γmw)/Fσ cannot be eliminated by

a chiral rotation. As a result, there is a residual interaction LKSσ = gKSσ KSσ which mixes KS and

σ in lowest O(p2) order2

gKSσ = (γm − γmw)Re{(2m2
K −m2

π)ḡM −m2
πgM}Fπ/Fσ (5.6)

2We have corrected a factor of 2 in the formula for the KSσ coupling in our original papers [5, 6].
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and produces the ∆I = 1/2 σ -pole amplitude of Fig. 1 (B).

The χPT3 analysis of 1985 [13] included a suggestion that kaon decays be tested by applying

lattice QCD to the weak process K → π , with both K and π on shell. It was made at a time when

low-lying scalar resonances (ε(700) before 1974, f0(500) since 1996) were thought not to exist.

This proposal now needs to be taken seriously because:

• Lattice calculations are much easier with only two particles on shell instead of the three in

K → ππ (all on shell) being analysed by the RBC/UKQCD collaborations [20, 21].

• The 1985 analysis is easily extended to χPTσ by including σ/ f0 pole amplitudes in chiral

Ward identities connecting on-shell K → ππ to K → π on shell. The no-tadpoles theorem

〈K|Hweak|vac〉= O
(

m2
s −m2

d

)

, K on shell , (5.7)

remains valid.

• The lattice result for K → ππ on-shell will not distinguish ∆I = 1/2 contributions from the

g8 contact diagram and the σ/ f0 pole diagram in Fig. 1 (B). A lattice calculation of K → π

on shell would measure g8 (and g27) directly, with no interference from σ/ f0 poles. Then

we would finally learn whether g8 is unnaturally large or not.

A key feature of the proposal is that the operator in the on-shell amplitude 〈π|[F5,Hweak]|K〉 nec-

essarily carries non-zero momentum qµ = O(mK). For either χPTσ or χPT3, the K → π amplitude

can be evaluated in the range

−m2
K . q2 6

(

mK −mπ

)2
. (5.8)

We highlight the point qµ 6= 0 because since 1985, there has been a widespread misconception

in the literature3 that the analysis [13] involved setting qµ = 0 as in [19], with the pion in K → π

sent off shell via an interpolating operator. There was and is no reason for this. For example, when

writing a soft meson theorem for Σ → pπ , it is not necessary to force one of the baryons off shell.

6. Issues

When considering the validity of χPTσ , it is important to avoid any presumption that dimen-

sional transmutation necessarily implies that θ
µ
µ is large and 6= 0. Implicit in this intuition is a

prejudice that scale invariance cannot be strongly broken via the vacuum when θ
µ
µ → 0. If the

dilaton is a true NG boson, i.e. mσ → 0 with Fσ 6= 0 for θ
µ
µ → 0, it can couple to mass insertion

terms in Callan-Symanzik equations and cause them to be non-zero in the zero-mass limit. Then

Green’s functions do not exhibit the power-law scaling expected for manifestly scale-invariant field

theories.

This point is illustrated for the quark condensate in Fig. 1 (A). In scenario 1 (top diagram), the

running of αs is driven by the presence of quantities like 〈q̄q〉vac (a mechanism often cited in papers

on walking gauge theories [22]). In scenario 2 (bottom diagram), the running coupling freezes at

αIR, where the condensate is a scale-breaking property of the vacuum.

3We thank the final referee of our long paper [6] for drawing our attention to this.
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Lattice investigations of IR fixed points inside the conformal window 8 . N f 6 16 all depend

on naive scaling of Green’s functions [22], so they correspond to scale-invariant vacua. A recent

lattice study [23] of the running of αs for two flavors with no naive scaling suggests that it freezes:

the fixed point realises scale invariance in NG mode, i.e. with a scale-breaking vacuum. That is

what χPTσ assumes for three flavors.

The term “dilaton” often refers to a spin-0 particle or resonance which couples to θµν and

acquires its mass “spontaneously” due to self interactions. Originally, this idea concerned a scalar

component of gravity [24], but now it is a key ingredient of dynamical electroweak symmetry

breaking (pp. 198 and 1622-3, PDG tables [9]). This approximates theories with scale-invariant

vacua, as is evident in walking technicolor. Therefore it has nothing to do with our dilaton [25].

It is well known that a resonance cannot be represented by a local interpolating operator, so

is the fact that σ/ f0(500) has a finite width a problem for χPTσ ? The answer is “no” because

χPTσ is an expansion in powers and logarithms of mπ,K,η ,σ with coefficients determined in the

exact chiral-scale limit (1.2) where σ has zero width [6]. In any perturbation theory, decay rates

are calculated that way.

A related remark concerns what is current best practice for scenario 1. The resonance f0(500)

is treated as a member of the non-NG sector with an accidentally small mass. It causes χPT3 to

produce divergent expansions for amplitudes involving f0(500) poles: the radius of convergence

is too small. Instead, these amplitudes are approximated dispersively via contributions from the

dominant f0(500) poles with corrections from nearby thresholds, subject to exact chiral SU(3)×
SU(3) constraints such as Adler zeros. One would certainly not use local fields in this framework.

However χPTσ is a more ambitious theory. Having promoted σ/ f0 to the NG sector, we

expect convergent asymptotic expansions for all mesonic amplitudes (scenario 2). The NLO cor-

rections are still being worked out, but a first guess is to set all multi-dilaton vertices to zero. That

is equivalent to adding the simplest dilaton diagrams to all χPT3 diagrams. It seems to produce

amplitudes very similar to those of the dispersive approximations of scenario 1.
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