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1. Introduction

In hadron physics many of the excited states observed experimentally still elude rigorous un-
derstanding from the fundamental theory of Quantum Chromodynamics (QCD). These excited
states are observed as short-lived resonant enhancements in the scattering cross-sections of lighter
hadrons such as pions and kaons that are stable within QCD and thus survive long enough to trigger
a particle detector.

In simple cases, such as the ρ(770) resonance, only the ππ→ ππ channel contributes, however
for the majority of cases multiple final states are present. This includes old puzzles like the a0(980)
and f0(980) seen around KK̄ threshold, and new mysteries like the “XYZ” resonances seen in the
charm energy region. The presence of multiple final states necessitates studying these resonances
in a coupled-channel framework which has recently become possible using Lattice QCD.

In both experimental and theoretical analyses, the first step is to map out the scattering ampli-
tude usually expressed as a function of the centre of mass energy, Ecm. This can then be decom-
posed into partial waves with definite angular momentum, and analytically continued to complex
energies to identify resonance poles and residues, which contain the masses, widths and relative
coupling strengths to each scattering channel.

2. Scattering in a finite volume

In a finite cubic volume L3 with periodic boundary conditions, the momentum ~p is quantised
as ~p = 2π

L ~n where ~n can be any triplet of integers, and thus the infinite-volume continuum of
hadron-hadron scattering energies is also quantised. In the absence of any interactions between the
hadrons, the allowed values of energy are

E =
(

m2
1 +(2π~n1/L)2

) 1
2
+
(

m2
2 +(2π~n2/L)2

) 1
2

(2.1)

for hadrons with masses m1 and m2. If the finite volume contains interactions between the hadrons
then the finite volume energies are shifted away from these values, which can be mapped on to
the infinite volume scattering amplitudes as was first derived by Lüscher and extended to consider
non-zero total momentum, unequal masses, coupled-channels and scattering particles with intrinsic
angular momentum [1–15]. In the calculations presented, the quantisation condition applied is

det [111+ iρρρ(Ecm) · t(Ecm) · (111+ iM(Ecm,L))] = 0 (2.2)

where ρρρ is a diagonal matrix with ρi = 2ki/Ecm, the phase space in scattering channel i, t is
the scattering t-matrix which is related to the S-matrix by S = 1+ 2i

√
ρρρ · t · √ρρρ , and the matrix

M contains sums of the generalised Zeta functions subduced into the relevant finite volume little
groups, as defined in ref. [16]. The determinant is taken over channel and partial wave indices.

This quantisation condition is well-established and has been derived in a variety of methods.
It is valid for general hadron-hadron scattering amplitudes. Several closely related methods such
as a Hamiltonian and effective field theories in a finite volume also find the same quantisation
condition1, with a fixed form of the infinite volume interactions [9, 17].

1Up to negligibly small exponentially suppressed corrections.
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3. Extracting Lattice QCD spectra and elastic scattering

In lattice QCD we compute Euclidean correlation functions, Ci j(t) =
〈
0
∣∣Oi(t)O j(0)†

∣∣0〉 that
decay exponentially, and at large times are dominated by the ground state of the quantum numbers
of the operator O†. In order to obtain the finely spaced spectra required for scattering calculations
the variational method can be applied [18–21]. A matrix of correlation functions is computed and
diagonalised using a generalised eigenvalue problem,

Ci j(t)vnj = λn(t, t0)Ci j(t0)vnj (3.1)

where the finite volume spectrum {En} is obtained from the leading t dependence of λn(t, t0) ∼
e−En(t−t0).

In order to extract a complete spectrum in a given energy region, it is necessary to use a
sufficiently large basis of operators with a diverse range of constructions. The bases used in the
calculations presented below comprise constructions like ψ̄ΓD...Dψ that overlap well onto “qq̄”
contributions to the spectrum, and constructions that resemble hadron-hadron states projected into
definite momentum ∑~p1,~p2 C (~p1,~p2)Ω

†
n1(~p1)Ω

†
n2(~p2). We use variationally-optimal operators Ω

†
n

formed from the eigenvectors vnj of single-hadron correlation matrices [16, 22].
To illustrate the methods we begin with ref. [23] that considers the ρ resonance in I = 1,

JP = 1− ππ scattering with mπ = 236 MeV in a cubic volume with L = 4.3 fm and 323 spatial
points, also covered in ref. [24]. The distillation method [25] is used to efficiently compute all the
Wick contractions required by QCD. The ρ resonance is a well-established benchmark scattering
calculation, having been widely studied by several groups at a range of pion masses [26–35].

0.10

0.15

0.20

Figure 1: The spectra extracted from rest frame correlation matrices from ref. [23]. The first column contains
operators that resemble q̄q, ππ and KK̄ which yield five energy levels in this region. Using various subsets
of these bases we find fewer states with larger uncertainties. The histograms show the contributions of each
operator to the eigenvectors as suitably normalised overlap factors.

In scattering calculations, it is important to use a basis capable of interpolating every finite
volume energy level present in a given energy region. Figure 1 shows the spectra that are extracted
from five bases, the leftmost column of states uses the largest basis. Removing various classes
of operator leads to fewer states, some with greater uncertainties, and some that are statistically
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precise but inaccurate. The horizontal bars represent the overlaps of different operators O† on to
each lattice QCD eigenstate and there is considerable mixing between both the “qq̄” and “hadron-
hadron” contributions. Using only ψ̄ΓD...Dψ constructions yields just one state that is statistically
incompatible with any of the states from the larger bases. In this example, it appears essential to
have both the “qq̄” and “hadron-hadron”-like constructions in the operator basis.

Working in the rest frame, we find two levels in the single-channel region. In a finite volume,
one efficient way of increasing the number of energy levels is to compute correlation matrices with
an overall momentum ~d =~n1 +~n2, with respect to the lattice. Considering 5 moving frames up to
overall momentum ~d2 = 4, this volume yields 22 energy levels below 4π threshold that can be used
in the determinant condition Eq. 2.2 to determine the scattering amplitude. A selection of these are
shown in Fig. 2.
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Figure 2: The finite volume spectra extracted in I = 1 dominated by J = 1 interactions in the energy region
where the ππ and KK̄ channels are open [23]. The points are the energy levels, the solid lines are the non-
interacting energies for meson-meson operators that were included in the basis; the dashed lines show non-
interacting levels where operators were not included. Horizontal dotted lines indicate channel thresholds.
The overall momentum is labelled with ~d = (i, j,k) = [i jk].

In elastic scattering, the t-matrix can be written as t = 1
ρ

sinδeiδ and inserted into Eq. 2.2
to relate each energy level to the scattering phase shift2 δ . The discrete points shown in Fig. 3
are obtained, showing a rapid variation of phase passing through 90◦, indicating the presence of a
nearby resonance pole, shown in Fig. 4.

A more generally applicable method to extract infinite volume scattering information is to
parameterise the energy dependence of the t-matrix in Eq. 2.2 to produce the whole spectrum at
once. The parameters can then be minimised using a χ2 so that the lattice QCD spectra are well-
described. One strength of this method is that it allows amplitudes with multiple unknowns at a
given energy to be extracted, for example in coupled-channel scattering or if multiple partial waves
contribute. Another strength is that these forms may be analytically continued to complex energies
to extract resonance poles. One possible cause for concern is that a specific form may bias the
result in some way, in order to circumvent this, a wide range of t-matrices can be used to infer that
there is no dependence on this intermediate step. This is clear when considering the t-matrix poles
in Fig. 4 where statistically compatible results are found over many parameterisations.

2Up to higher partial wave contributions, this is not discussed further here, but details are given in the references.
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Figure 3: The elastic ππ phase shift in I = 1, JP = 1− using the energy levels shown in Fig. 2 and five addi-
tional irreps that are not shown. Each discrete point corresponds to using an individual level to obtain a value
of the phase shift from Eq. 2.2. The continuous curve corresponds to using a Breit-Wigner parameterisation
in Eq. 2.2 minimised simultaneously using all 22 levels in the elastic region, from ref. [23].
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Figure 4: The position of the t-matrix pole of the form t ∼ c2
ππ

s0−s , where s = E2
cm, on the “unphysical” Rie-

mann sheet which corresponds to taking the negative sign of the imaginary part of the scattering momentum.
The real and imaginary parts in

√
s0 correspond to the mass and width of a ρ resonance, as computed in

ref. [23]. The zoomed panel shows the result of using many parameterisations, where very good agreement
in both the real and imaginary parts is observed.
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4. Coupled-channel scattering

In order to compute the properties of resonances at higher energies where multiple channels
contribute simultaneously, it is necessary to perform an analysis where the effects of coupling
between the channels is included. For elastic scattering, the amplitude can be expressed as a single
phase as a function of energy, δ (Ecm) as was done above for the ρ resonance. In coupled-channel
scattering, the amplitude is a complex unitary matrix S, with dimensions equal to the number
of channels. In the scattering S-matrix for a two-channel system there are three unknowns as
a function of energy3, so to simultaneously constrain these functions, multiple energy levels are
required.

One useful form for plotting the elements of the S or t-matrix is to use the phase and in-
elasticity, the simplest definition of this comes from the diagonal elements of the S-matrix where
Sii = ηe2iδi . In terms of the t-matrix this reads,

t =

(
1

2iρ1

(
ηe2iδ1−1

) √
1−η2 1

2
√

ρ1ρ2
eiδ1+iδ2√

1−η2 1
2
√

ρ1ρ2
eiδ1+iδ2 1

2iρ2

(
ηe2iδ2−1

) )
(4.1)

where η is the inelasticity, and δi is the phase shift in channel i. These are just real functions of
Ecm. When only one channel is kinematically open, η = 1 and only the phase of the open channel
is relevant. In the two-channel region, unitarity of the S-matrix requires η ∈ [0,1] with smaller
values indicating a larger coupling between the channels.

In order to make use of the constraint provided by all the energy levels in a given region, which
typically do not coincide, some interpolating function is required. Unitarity fixes the imaginary part
of the inverse t-matrix for real energies to Im t−1 =−ρρρ , thus the scattering amplitude can be written
in terms of some matrix K

t−1 = K−1− iρρρ , (4.2)

that is real for real Ecm. Any form can be used, however certain terms are known to exist, for
example from dispersion relations one can identify logarithms that must be present4 due to the
simple phase space ρ . This is used to form the Chew-Mandelstam phase-space I(E2

cm), presented
in the appendices of ref. [23], and is widely used in infinite volume amplitude analyses due to it
having better analytic continuation properties.

The finite volume spectra can then be utilised to constrain many forms of K that contain a
few parameters each, these parameters are then over-constrained and a minimisation procedure can
be performed where the spectrum from Eq. 2.2 is compared with that found from the variational
analyses of lattice QCD correlation functions.

In the simplifying limit that there are two decoupled channels, two independent finite-volume
spectra are superimposed. An example of this is given by the solid curves in Fig. 5, for the case
of the coupled I = 1 ππ , KK̄ system in the T−1 irrep, extending the ρ resonance described above
into the coupled-channel region. Taking a coupled-channel t-matrix and artificially increasing the

3For each partial wave.
4These logarithms also arise when considering meson loops, for example at next-to-leading order in chiral pertur-

bation theory.
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size of the off-diagonal elements, the dashed curves in Fig. 5 are obtained. This illustrates the
scale of the effects that must be probed in order to obtain coupled-channel scattering information.
Differences in the energy levels of around 1% are seen, which can be computed using lattice QCD.
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Figure 5: An illustration of the size of the effects to be probed when performing a coupled-channel analysis.
The upper panel shows phase shifts δi and inelasticity η (orange), for a ππ (red), KK̄ (green) system. The
real (black) and imaginary (blue) parts of the determinant are shown in the bottom panel. The solid curves
are a K-matrix parameterisation from the ρ calculation described in section 3. The dashed curves show the
result of artificially increasing the off-diagonal elements of the t-matrix moving the inelasticity η from 1. In
the determinant, one of the solutions marked by a pink arrow, shows a shift of the order of 1% due to this
change in the amplitude, these details can be probed using lattice QCD calculations.

5. An a0 resonance

In the region around KK̄ threshold in JP = 0+, in both I = 0 ππ and I = 1 πη scattering,
puzzling effects are observed as the KK̄ channel opens. In I = 1, a range of phenomenological
parameterisations working from experimental data produce a sharp peak in the πη → πη cross
section at KK̄, see for example ref. [36]. The first lattice calculation was presented in ref. [37] and
summarised in these proceedings [38].

We compute a matrix of correlation functions using a large basis of operators with q̄q-like
and meson-meson-like constructions projected into definite lattice momenta, for each πη , KK̄ and
πη ′ combination that could possibly contribute in the energy region of interest. The energy levels
extracted from the variational method, for zero overall momentum are shown in Fig. 6. Levels
shown in black, are seen to have large shifts away from where they would be expected in the
absence of interactions, indicated by the solid curves. These large differences suggest non-trivial
interactions are present. Another indicator is that significant contributions from multiple types of
operators are seen in the eigenvectors for each level, shown by the horizontal bars in Fig. 6. In
order to quantify these effects in terms of the scattering matrix, the determinant condition Eq. 2.2
must be utilised.
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Figure 6: The spectra and operator overlaps obtained in the A+
1 irrep with I = 1, dominated by JP = 0+ in

the energy region where πη , KK̄ and πη ′ channels are kinematically open. Many levels are significantly
shifted from the non-interacting energies suggesting the presence of significant meson-meson interactions.
The eigenvectors show a large amount of mixing between the operators used, as indicated by the horizontal
bars [37].

In the method outlined at the end of the previous section, first a K-matrix must be constructed
to describe this system. One possible form is

Ki j =
gi g j

m2− s
+ γi j (5.1)

where gi, m and γi j are real parameters that are minimised to describe the finite volume spectrum.
This form is capable of efficiently producing a t-matrix pole, however there is no requirement this
pole be close to the real axis. Many other forms are used, such as representing the inverse K-matrix
as a polynomial

K−1
i j =

N

∑
n=0

c(n)i j sn (5.2)

where c(n)i j are real numbers and N is a small integer. Other variations include fixing various pa-
rameters to zero and varying the real part of I(s), either switching it off altogether, or changing
the subtraction point. Many minimisations are performed with these K-matrices, and we select all
those capable of describing the spectra up to some maximum χ2/Ndof.

We begin with the two-channel region below πη ′ threshold, where πη and KK̄ are kine-
matically open. Using the energy levels given in Fig. 6 there is not much constraint, however
this is remedied by using moving reference frames as described above. Considering boosts up to
~d = [200], 47 energy levels are obtained. These levels and the result of the minimisation using
Eq. 5.1 in Eq. 2.2 are shown in Fig. 7. This form reproduces the finite volume spectra well, and
indeed this fit has χ2/Ndof = 1.4. In terms of more familiar quantities, we show the corresponding
phase shifts δi and inelasticity η in Fig. 8, as defined in Eq. 4.1 above.
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Figure 7: The spectra obtained in a0 quantum numbers for 5 different moving frames from ref. [37], shown
in black. The orange points are the result of minimisation using a t-matrix in Eq. 2.2 defined by the K-matrix
in Eq. 5.1 and a Chew-Mandelstam phase space, as described in the text.

In order to understand the resonance content of the scattering amplitudes, we analytically con-
tinue to complex energies to obtain the positions of the complex poles contained in these minimised
t-matrices. In elastic scattering, there are two Riemann sheets connected along a square-root branch
cut that runs along the real energy axis from threshold to +∞. The first sheet is obtained by taking
the root of kcm where Imkcm > 0, while the second sheet where resonance poles are found corre-
sponds to taking the other sign. A similar picture emerges in coupled-channel scattering except
now there are 2n sheets to consider.

In each amplitude that successfully describes the finite volume spectra, we consistently find
a pole of the form t ∼ cic j

s0−s , on the sheet corresponding to (sign(Imkπη),sign(ImkKK̄)) = (+,−),
sometimes referred to as sheet IV. This pole is very close to the boundary where this sheet connects
to sheet II with signs (−,+). This is interesting since the phase shifts undergo a flip as the pole
moves from one sheet to the other, as is described in the appendices of ref. [37]. The amplitudes
when plotted as ρiρ j|ti j|2 which is proportional to the cross-section, varies smoothly moving the
pole from sheet II to sheet IV, shown in Fig. 25 of ref. [37].

In ref. [37] the possible positions of additional poles and the connection between the amplitude
on the real axis and the poles in the complex plane was investigated. In order for a t-matrix pole
to have a significant effect on the real axis it must be reasonably nearby. While many amplitudes
contained additional poles none of these were found in close proximity to the physical scattering
line, nor were they particularly well constrained, suggesting they cannot be very relevant to the
physical scattering process.

The factorised residues of the sheet IV pole are obtained by considering each element of the
t-matrix to extract cπη and cKK̄ . These have a similar magnitude indicating the resonance has a
significant coupling to both channels. These couplings are plotted in the right pane of Fig. 9.

An amplitude dominated by a single pole on one Riemann sheet is often associated with a sig-
nificant molecular component [39–41], in contrast to having nearby poles on two or more Riemann
sheets. The behaviour of this amplitude as a function of the pion mass will bring additional insight
into the origin and nature of this resonance pole.
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Figure 8: The phase shifts and inelasticity in the two-channel region in a0 quantum numbers from ref. [37].
The central points show the positions of finite volume energy levels constraining the amplitudes. Rapid
changes are seen just above KK̄ threshold. The inelasticity η deviates sharply from 1 and both channels
undergo rapid variations in phase, due to a single nearby a0 resonance pole.
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Figure 9: Left: The poles in the a0 amplitudes, where ti j ∼ cic j/(s0− s) in the region of the pole. The
well-determined sheet IV pole is shown in red and is present in every amplitude that successfully described
the finite volume spectrum. Other poles were present in many of the amplitudes but only far from the real
axis where physical scattering occurs. While not particularly well constrained, the distance of these poles
indicates they are also much less relevant to physical scattering. The poles found when using the form in
Eq. 5.1 are highlighted in black. Right: The factorised residue or “couplings” ci of the sheet IV pole in both
the πη and KK̄ channels, showing good agreement over many parameterisations.
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6. Other studies

Using these methods, hadron-hadron scattering amplitudes with many quantum numbers can
be computed. The first coupled-channel study using lattice QCD spectra was presented in refs. [42,
43], for the coupled πK, ηK system, that also used a pion with mπ = 391 MeV. The channels
were found to be weakly coupled and a broadly rising S-wave πK phase shift was extracted that
was due to a broad K?

0 resonance pole. A virtual bound-state pole was also seen on an unphysical
sheet below πK threshold. Scattering amplitudes were also extracted for the P and D-waves with a
near-threshold K? bound-state in P-wave and a narrow K?

2 resonance in D-wave.
Recently these coupled channel methods have been applied to processes involving charm

quarks, for Dπ scattering [44], where only the elastic region had been considered previously [45].
This coupled-channel study considered the three-channel Dπ, Dη , DsK̄ system and extracted three
partial waves. A broad feature was observed in S-wave due to a bound-state just below Dπ thresh-
old with a large coupling to Dπ . This produced a broad enhancement in the Dπ → Dπ amplitude,
shown in the right panel of Fig. 10 plotted as ρiρ j|ti j|2 which is proportional to the cross-section.
Only small effects were present in the other channels up to D?ππ threshold. In D-wave, a narrow
D?

2 resonance was found with a dominant coupling to the Dπ channel, and a deeply-bound D? pole
was computed in P-wave.
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⇢i⇢j |tij |2

D⇡ ! D⇡

DsK̄ ! DsK̄
D⌘ ! D⌘

D⇡ ! D⌘

D⌘ ! DsK̄
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Figure 10: Left: The coupled πK, ηK system in S-wave, showing a broad enhancement in the πK phase
shift in red and small ηK phase shifts in green. The multiple bands include the variation over many pa-
rameterisations. Only small couplings between the channels were observed in this first study such that the
inelasticity η (blue) was found to be consistent with 1 over the energy region that was constrained. The
central points show the locations of finite-volume energy levels. Right: The Dπ, Dη , DsK̄ amplitudes in
S-wave plotted as ρiρ j|ti j|2. The diagonal elements are shown in the top panel and off-diagonal elements
are shown in the bottom panel. The points with errors show the positions of the lattice QCD energy levels.
A broad feature is observed in the Dπ → Dπ amplitude due to a near-threshold bound-state with a large
coupling to the Dπ channel.
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7. Summary & Outlook

Recently, it has become possible to perform coupled-channel scattering calculations using lat-
tice QCD, these have been applied at light and charm quark energies to two and three-channel
hadron-hadron scattering. The a0 resonance calculation was the first to extract a scattering ampli-
tude from lattice QCD energy levels with strongly-coupled channels, indicated by the inelasticity
η approaching zero in Fig. 8. Although not presented here, scattering amplitudes were also ex-
tracted including the πη ′ channel up to πππη threshold where Eq. 2.2 is valid. In refs. [42, 43],
the πK, ηK coupled system was analysed, also at mπ = 391MeV finding a broad S-wave reso-
nance and weakly-coupled scattering channels. Recently, the three-channel Dπ, Dη , DsK̄ system
was also analysed where a D?

0 bound-state was found at Dπ threshold [44].
Future studies will consider the ππ, KK̄, ηη system in f0 quantum numbers, extending a

recent elastic ππ study observing a σ pole [46]. Many systems with charm and charm-anticharm
quark content have yet to be investigated. Calculations involving operators that resemble tetraquark
objects are underway, and extensions of these methods to include electromagnetic probes have
recently been completed [47, 48], with further progress reported in these proceedings [49].

One challenge facing these methods when calculations are performed at lighter pion masses
is that channels open with three or more hadrons, like 3π and 4π in meson channels and Nππ in
baryon channels. Significant progress is being made to understand these three-body channels [50–
52]. Many interesting two-body channels remain, for example coupled-channel methods have yet
to be applied to scattering of spinning particles, which are present low in the spectrum for systems
like Nπ , D?π or J/ψπ .

These recent computations demonstrate that coupled-channel scattering amplitudes can be
extracted using lattice QCD. The methods utilised show great promise for rigorously extracting
properties of unstable states higher in the spectrum, and provide opportunities to make use of
infinite volume amplitude analysis methods that compare directly with experiment.
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