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1. Introduction

Isospin is an approximate symmetry violated at the percent level by two effects: up and down-quark
mass difference and electromagnetic interactions. There are three main reasons to include isospin-
breaking effects in lattice simulations:

• Calculate pure isospin-breaking effect, like hadron-mass splitting or up and down-quark
renormalized mass difference.

The lattice community has been active on the front of hadron-mass splitting since the ex-
ploratory studies in the electroquenched setup in [1, 2, 3, 4]. The 2015 BMW work [5] on
baryon-mass splitting remains a landmark for the complexity of the simulations and for the
rigorous treatment of finite-volume effects in presence of dynamical photons. The QCDSF-
CSSM-RIKEN-Kobe (in the following, QCDSF for short) collaboration has reported in this
conference on their hadron-mass splitting calculation [6, 7, 8]. The BMW and QCDSF work
has been reviewed Liu’s plenary talk in this conference and related proceedings [9].

The BMW collaboration has also reported in this conference on their calculation of the up
and down-quark mass difference, in the electroquenched setup [10, 11]. The mu = 0 solution
to the strong CP problem is excluded by their calculation, assuming that the estimate for the
systematic error due to electroquenching be reliable.

All calculations mentioned so far of the BMW and QCDSF collaborations rely on non-local
prescriptions to describe charged particles. I will come back to this point later on.

• Improve on the determination of observable, which have reached the precision of order
1%. This is the case for decay rates of light mesons.

In fact the FLAG working group reports the following world averages for pion and kaon decay
constants at the isosymmetric point [12]

Fπ = 130.2(1.4) MeV , FK = 155.6(0.4) MeV ,

with a relative error of 1% and 0.3% respectively. On the other hand radiative corrections to
leptonic decay rates of pion and kaon are estimated to be about 1.8% and 1.1% respectively on
the basis of χPT [13, 14], and already dominate the error budget. In order to improve on the
state-of-the-art lattice determinations of such decay rates, isospin breaking corrections must be
included.

The RM-SOTON collaboration has presented in this conference a strategy to calculate leptonic
decay rates, and some preliminary results for light mesons in the electroquenched setup [15,
16, 17, 18]. Calculations of radiative correction to decay rates present extra complications
with respect e.g. to mass-splitting calculations due to the existence of IR divergences in QED.
Even though IR divergences have been studied since the early days of QED and are very well
understood, they do not belong to the standard toolbox of the lattice community. For this reason
I have chosen to devote section 3 to reviewing general aspects of decay rates and IR divergences,
in relation to the RM-SOTON calculation, but also with a (superficial) eye to heavy-meson
decay rates.

• Improve on theoretical estimates of possibly large radiative corrections, like to decay rates
of heavy mesons, or to the HVP contribution to gµ −2.
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The RBC-UKQCD collaboration has presented in this conference some preliminary studies on
the isospin-breaking correction to the HVP contribution to gµ −2 [19].

On the other hand no activity has been reported on equally-interesting radiative corrections
to decay rates of heavy mesons. For instance radiative corrections to B→ D`ν are relevant
for a precise determination of |Vcb| at the upcoming Belle II experiment (see for instance
BELLE2-NOTE-PH-2015-002), and are expected to be of order 3% as reported in the 2016
PDG review [20]. A search in the references therein (e.g. [21, 22, 23, 24, 25]) reveals that
radiative corrections are estimated very crudely by separating three contributions:

1. Short-distance contributions, due to photons coupling to the W . These contributions can
be systematically accounted for by means of the OPE.

2. Long-distance soft-photon contributions (inner-bremsstrahlung) in loops and finale-state
radiation. These are analytically calculable.

3. Long-distance hard-photon contributions (structure-dependent contributions). These are
fully non-perturbative, and they are either neglected or estimated by saturating relevant
matrix elements with a few resonances (see also [26]).

Structure-dependent contributions may be enhanced by quasi-on-shell resonances and collinear
quasi-divergences which arise when charged leptons are produced with large energy, and ne-
glecting them may be not fully justified at the required level of precision (some of these issues
will be highlighted in section 3). It is important to understand if a robust strategy can be de-
signed to estimate these contributions from lattice simulations.

Moving to more numerical issues, two very general strategies have been proposed in order to calculate
isospin-breaking effects in lattice simulations, which have been already reviewed in detail in plenary
talks [27, 28] of previous editions of the Lattice conference:

• Generate configurations in the isosymmetric limit and reweight them. The reweighting factor
can be included in a standard fashion as a ratios of fermionic determinants averaged over the
photon field as originally proposed in [29, 30]. Alternatively the reweighting factor (along with
the observables) can be expanded at first order in md −mu and αem (RM123 method [31, 32]).
In practice one needs to insert ψ̄ψ and ψ̄γµψ operators into the original observables, multi-
ply times the photon propagator and sum over the photon momenta. The convolution with the
photon propagator can be stochastically estimated. The clear advantage of this particular incar-
nation of reweighting is that one has direct access to the leading isospin-breaking corrections
as O(1) observables, rather than O(αem)∼ O(∆mud) effects on O(1) observables.

• Generate non-isosymmetric configurations at unphysically large values of md −mu and αem

and extrapolate to the physical point. This strategy has been used by the BWM [5] and the
QCDSF collaboration [6] (first explorations in the electroquenched setup can be found in [1]).
As observed by the BMW collaboration O(α2

em) effects seem to be surprisingly small if αem

is the renormalized coupling, and this is essential for the strategy to work. The extrapolation
can be performed along different parameter trajectories. For instance the QCDSF collaboration
claims [7] that choosing a trajectory that departs symmetrically (in some sense that is specified
in their work) from the SU(3) symmetric point is particularly beneficial.
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A detailed comparison between these two methods would be very interesting and is still missing. A
first move in this direction has been presented by the RBC-UKQCD collaboration [19] in the context
of the electroquenched approximation.
The inclusion of electromagnetic corrections in lattice simulations is especially challenging from the
theoretical point of view. Typically lattice simulations assume a finite box with periodic boundary
conditions along the spatial directions. However Gauss law forbids states with total electric charge
different from zero in a box with periodic boundary conditions. This is an essential obstruction for
numerical simulations which aim at calculating properties of charged particles. Several prescriptions
have been proposed in order to circumvent this problem. A big fraction of this contribution (section 2)
is devoted to a critical review of these prescriptions, what we know about them, together with some
new results. In particular I will discuss the following aspects:

• If Ãµ(p) is the photon field in Fourier space, the QEDTL prescription [1] is defined by imposing
the constraint Ãµ(0) = 0. As already noticed by BMW [5], QEDTL does not have a transfer
matrix with a regular perturbative expansion. QEDTL has been used in the BMW calculation of
the up and down-quark mass difference [10, 11]).

• The QEDSF prescription [33] is defined by restricting the value of V−1eÃµ(0) in the interval
(−πL−1

µ ,πL−1
µ ). Charged-field two-point functions in QEDSF do not have a local representation

in time, therefore the existence of a transfer matrix in the charged sector is not guaranteed (and
very unlikely). QEDSF has been used in all QCDSF calculations.

• The QEDL prescription [34] is defined by imposing the constraint Ãµ(p0,0) = 0 for any p0.
Renormalization of higher-dimensional operators by local counterterms breaks down in the φ 4

scalar theory with a constraint analogous to QEDL. This also implies that the operator product
expansion as well as the Symanzik effective-theory description of the lattice theory close to the
continuum limit break down because of non-local contributions. QEDL has been used in the
BMW baryon-mass splitting calculation [5] and in the RM123-SOTON decay rate exploratory
calculation [17].

• QED with a massive photon (QEDm) is a perfectly consistent QFT. In finite volume the theory
has two IR regulators, the photon mass mγ and the box size L [35]. The L→ ∞ limit has to
be carefully taken before the mγ → 0 limit, as the two limits do not commute. For instance,
if mγ is too small, the spatial-momentum dependence in charged-hadron two-point functions is
suppressed and the extraction of states with definite momentum is hindered.

• QED with C-parity boundary conditions (QEDC) in the spatial directions is also a perfectly
consistent QFT [36, 37]. The boundary conditions partially break flavor conservation in a local
fashion. The flavour mixing induced by the boundary conditions does not affect the majority
of the stable hadrons, is exponentially suppressed with the volume in two-point functions, and
absent in the renormalization of composite operators. QEDC also allows a completely gauge-
invariant description of charged interpolating operators.

The prescription that defines QEDL has been widely believed to be harmless for a few years, on
the basis that operators with dimension not larger than 4 renormalize as in infinite volume at one
loop. The first sign of sickness was analyzed in [38]: in the non-relativistic limit charged particles
and antiparticles do not decouple. The breakdown of the Symanzik expansion casts a shadow on
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the ability to extract a reliable continuum limit, especially when large values of αem are used in the
extrapolation. In favour of QEDL one may argue that none of the above prescriptions is completely
free of problems or potential subtleties. This does not come as a surprise as the constraint that we are
trying to circumvent (Gauss law) is not just a technical one, but has a deep physical origin rooted in
the very fundamental structure of QED. Reality is that the subtleties arising in local prescriptions as
QEDm and QEDC can be systematically studied and accounted for with the powerful tools of QFT.
On the other hand no general tool exists for non-local prescriptions and every solution to any newly
found problem is a patch whose validity may be debatable until such general tools are developed. My
personal recommendation is to use and further develop theoretically sound setups, as the only way to
eliminate unwanted, uncontrollable and unnecessary systematic errors in calculations which aim the
the percent precision.

2. Charged states in a finite box: discussion of proposed prescriptions

Gauss law forbids states with total electric charge different from zero in a box with periodic boundary
conditions. In fact the total electric charge is related via the Gauss law to the integral of the divergence
of the electric field, which vanishes because of the boundary conditions

Q =
∫
T3

d3x j0(t,x) =
∫
T3

d3x∂kEk(t,x) = 0 . (2.1)

This is obvious in classical electrodynamics. When temporal-gauge quantization is considered (see
e.g. [39]), the above equations is valid at the operatorial level when restricted to the physical Hilbert
subspace of gauge-invariant states. The absence of charged states in the physical Hilbert space is
an essential obstruction for numerical simulations which aim at calculating properties of charged
particles.

A different way to see that charged states do not propagate in finite volume with periodic boundary
conditions is the following. Consider QED in a Euclidean box with size L0×L1×L2×L3 and periodic
boundary conditions for all fields, and with with covariant gauge-fixing,

S(A,ψ, ψ̄) =
∫

d4x
{

1
4

F2
µν +

1
2ξ

(∂µAµ)
2 + ψ̄(γµDµ +m)ψ

}
, (2.2)

Dµ = ∂µ + ieAµ . (2.3)

The action and path-integral measure are invariant under large gauge transformations

Aµ(x)→ Aµ(x)−
2πnµ

eLµ

,

ψ(x)→ e2πi(L−1n)µ xµ ψ(x) , ψ̄(x)→ e−2πi(L−1n)µ xµ ψ̄(x) . (2.4)

Since large gauge transformations are not continuously connected to the identity, they survive any lo-
cal gauge-fixing procedure. The product ψ(x)ψ̄(y) transforms non-trivially under large gauge trans-
formations if x 6= y, therefore the two-point function of charged fields vanishes at distinct points, i.e.

〈ψ(x)ψ̄(y)〉= 0 , for x 6= y . (2.5)

This shows that charged states do not propagate in finite volume with periodic boundary conditions.
All prescriptions listed in section 1 solve this problem by destroying large gauge transformations
which prevent a non-zero charged two-point function to be defined. The next subsections are devoted
to reviewing particular aspects and issues for each prescriptions.
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Before moving to that, I want to add some remarks concerning the expectation values generated by
the QED action (2.2), which will be useful later on. I will denote these expectation values simply by
〈?〉, defined formally as

〈P(A,ψ, ψ̄)〉=
∫
[dA] [dψ] [dψ̄] e−S(A,ψ,ψ̄) P(A,ψ, ψ̄)∫

[dA] [dψ] [dψ̄] e−S(A,ψ,ψ̄)
. (2.6)

This expression is only formal as both numerator and denominator contain a multiplicative countable
infinity due to large gauge transformations, which can be trivially simplified as follows. Decompose
the photon field into its constant mode (a.k.a. global zero-mode) plus a fluctuation field

Aµ(x) = e−1(L−1
α)µ +Bµ(x) , with (L−1

α)µ

def
= L−1

µ αµ

def
=

e
V

∫
d4xAµ(x) . (2.7)

The integration measure over the photon field can be factorized into the integration measure over the
constant mode times the integration measure over the fluctuation. Consider an observable that trans-
forms under an irreducible representation of the (Abelian) group of large gauge transformations (2.4),
i.e.

Pz(A,ψ, ψ̄)→ Pz(A,ψ, ψ̄) ∏
µ

znµ

µ , (2.8)

for some z ∈ C4 and any n ∈ Z4. If Pz transforms non-trivially under large gauge transformations, i.e.
z 6= (1,1,1,1), then its expectation value vanishes. If Pz is invariant under large gauge transformations,
then the integration over the constant mode α can be folded into the fundamental domain (−π,π)4.
In formulae

〈Pz(A,ψ, ψ̄)〉=


∫
(−π,π)4 d4α

∫
[dB] [dψ] [dψ̄] e−S(A,ψ,ψ̄) Pz(A,ψ, ψ̄)∫

(−π,π)4 d4α
∫
[dB] [dψ] [dψ̄] e−S(A,ψ,ψ̄)

, if z = (1,1,1,1) ,

0 , if z 6= (1,1,1,1) ,

(2.9)

where it is understood that, up to an immaterial normalization,

[dB] def
=

[
∏

x
dB(x)

]
δ

(∫
d4x B(x)

)
. (2.10)

2.1 Absence of a transfer matrix in QEDTL

For simplicity we consider periodic boundary conditions for fermions in all directions. QEDTL is
simply defined by constraining the constant mode of the gauge field to zero, i.e.

〈P(A,ψ, ψ̄)〉TL
def
=

1
ZTL

∫
[dA] [dψ] [dψ̄] δ

(∫
d4x A(x)

)
e−S(A,ψ,ψ̄) P(A,ψ, ψ̄) , (2.11)

where ZTL is defined in such a way that 〈1〉TL = 1. The insertion of a constraint that is non-local in
time spoils the transfer-matrix (i.e. Hamiltonian) representation of the path integral.

As noticed by the BMW collaboration in [5], effective masses for charged states defined with the
QEDTL prescription at fixed order in e2 diverge in the T → ∞ limit. Let us be more precise, and
consider the two-point function

C(t) def
=

1
2

tr
1+ γ0

2

∫
d3x 〈ψ(t,x)ψ̄(0)〉TL . (2.12)

The polarization projection is not essential and is introduced for the sole purpose to simplify the
formulae as much as possible. Explicit calculation (see appendix A in the extended version) of the
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effective mass shows that

meff(t)
def
= − d

dt
lnC(t) = m+

e2T
16mL3 +O(e2T 0)+O(e4) . (2.13)

Notice that the linear term in T vanishes in the L→∞ limit, showing that the sickness of the prescrip-
tion manifests itself as a non-commutation of limits. Neglecting the fundamental issue that the QEDTL

prescription does not define a local QFT in finite volume, it has been suggested [10] that it is enough
to subtract the linear term in T from the effective masses in order to get meaningful results. However
notice that, if the O(e4) terms have a greater degree of divergence in T , these might contribute with a
non-negligible shift especially in full simulation at unphysically large values of e. Whether the higher
orders are under control or not is completely unexplored territory.

2.2 Absence of a transfer matrix in QEDSF

For simplicity we consider periodic boundary conditions for fermions in all directions. QEDSF is
simply defined by means of

〈P(A,ψ, ψ̄)〉SF
def
=

∫
(−π,π)4 d4α

∫
[dB] [dψ] [dψ̄] e−S(A,ψ,ψ̄) P(A,ψ, ψ̄)∫

(−π,π)4 d4α
∫
[dB] [dψ] [dψ̄] e−S(A,ψ,ψ̄)

(2.14)

for all observables. Notice that eq. (2.14) coincides with eq. (2.9) for observables that are invariant
under large gauge transformations. Even though the restriction in the path integral in eq. (2.14) is non
local, in the sector that is invariant under large gauge transformations one can use the symmetry to
undo the restriction and go back to an expectation value defined in terms of a local action. One might
wonder whether the same happens for the two-point function of the charged fermion. Let us see how
it works.
Consider the product ψ(x)ψ̄(0), and let us introduce the following non-local function of the photon
field

Nµ(A) =
⌊

αµ +π

2π

⌋
=

⌊
1
2
+

eLµ

2πV

∫
d4xAµ(x)

⌋
, (2.15)

where bxc denote the floor of x, i.e. the largest integer n such that n≤ x. Notice that Nµ(A) = 0 when
inserted in a QEDSF expectation value because of the restriction −π < αµ < π , therefore

〈ψ(x)ψ̄(0)〉SF = 〈e2πi(L−1x)µNµ (A)ψ(x)ψ̄(0)〉SF . (2.16)

It is easy to check that, under a large gauge transformation (2.4),

Nµ(A)→Nµ(A)−nµ , (2.17)

and the observable e2πi(L−1x)µNµ (A)ψ(x)ψ̄(0) is invariant. Since the QEDSF expectation value coin-
cides with the unconstrained one for observables that are invariant under large gauge transformations,
one concludes that

〈ψ(x)ψ̄(0)〉SF = 〈e2πi(L−1x)µNµ (A)ψ(x)ψ̄(0)〉 . (2.18)

Notice that eq. (2.18) shifts the non-locality from the path-integral measure (in the QEDSF expectation
value) to the observable (in the QED expectation value). In particular a Hamiltonian representation
for the two-point function seems not to be possible as, in the formulation with a local path-integral
measure, the observable is non-local in time, moreover the non-locality range is equal to the whole
lattice size.1

1This is by no means a proof that a Hamiltonian representation does not exist. In principle locality might be hidden by
an inconvenient choice of fundamental variables, and made manifest by a smart change of variables. I have been privately
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2.3 (Non)renormalization of composite operators and QEDL

The QEDL prescription is defined by replacing the photon-field integration measure with

[dA]→ [dA]
[
∏

t

] 4

∏
µ=0

δ

(∫
d3xAµ(t,x)

)
. (2.19)

This constraint is local in time, therefore QEDL admits a Hamiltonian. However this Hamiltonian is
non-local in space. Locality is a core property of quantum field theory, and several properties that
we usually give for granted depend on locality, such as renormalizability, operator product expansion,
effective-field theory description of low-energy modes. As we will see, the renormalization of com-
posite operators is broken by the constraint defining QEDL. Before moving on, I want to comment on
a couple of myths existing around QEDL.

• Since we are subtracting low-modes, i.e. IR modes, these should not affect the UV properties
of the theory. This is misleading on several levels. First one should notice that any notion of
IR/UV decoupling (which is deeply related to the concept of effective field theory) makes sense
only in a local theory. Second one should notice that the constraint in eq. (2.19) eliminates
Fourier components with p = (p0,0) for any value of p0 admitted by the boundary conditions.
Therefore the constraint in eq. (2.19) eliminates momenta with arbitrarily large norm.

• The QEDL prescription is equivalent to coupling QED to a classical uniform charge density.
Let Jµ(x) be a classical electromagnetic current. The action of QED coupled to the classical
current is

SJ = S0 + ie
∫

d4x Aµ(x)Jµ(x) . (2.20)

The dynamics of the quantum fields are determined by the probability distribution that defines
the path-integral, while the dynamics of the classical current is determined by classical equa-
tions of motion. In particular the classical current should not be integrated over. The dynamics
of the quantum fields in presence of a given classical current is local. QEDL is obtained by
choosing Jµ(x) to be invariant under spatial translations, and by integrating over it in the path
integral. The integration spoils the interpretation of Jµ(x) as a classical current.

Let us discuss the renormalization of composite operators. For sake of presentation, in place of QEDL,
we shall consider the φ 4 theory on R×T3 where T3 is the maximally symmetric three-torus with linear
size equal to L. We write the action having in mind the renormalized perturbative expansion

S =
∫

L3
d4x
{

1
2

φ(−�+m2)φ +
λ

4!
φ

4 +
δZ
2

φ(−�+m2)φ +
δm2

2
φ

2 +
δλ

4!
φ

4
}

, (2.21)

where φ is the renormalized field, m and λ are renormalized parameters, while δZ, δm2 and δλ are
the coefficients of the counterterms that are supposed to be at least O(λ ). We impose a constraint on
the path-integral measure that mimics QEDL

[dφ ]→ [dφ ]

[
∏

t

]
δ

(∫
d3xφ(t,x)

)
. (2.22)

The propagator ∆′(x) in coordinate space can be split in two pieces

∆
′(x) = ∆(x)−∆0(x0) , (2.23)

informed by Schierholz that he is working on a proof that a Hamiltonian representation of the two-point function actually
exists, and this would be an extremely interesting result.
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the propagator in the full theory without constraint

∆(x) =
1
L3 ∑

p∈ 2π

L Z3

∫ dp0

2π

eipxe−Λ−2(p2+m2)

p2 +m2 , (2.24)

and the subtraction

∆0(x0) =
1
L3

∫ dp0

2π

eip0x0e−Λ−2(p2
0+m2)

p2
0 +m2 , (2.25)

where the heat-kernel regularization has been used. The counterterms δZ and δm are determined (up
to a finite part) by requiring that the two-point function 〈φ(x)φ(0)〉 is finite in the Λ→∞ limit so long
as x 6= 0. Analogously δλ is determined by requiring that the four-point function of the renormalized
fields is finite. The calculation of the action counterterms is standard, as the constraint turns out to
play no role in the identification of the divergences of two and four-point functions at one loop. We
give the results

δZ = O(λ 2) , δm2 =− λΛ2

2(4π)2 +
λm2

(4π)2 ln
Λ

µ
+O(λ 2) , δλ =

3λ 2

(4π)2 ln
Λ

µ
+O(λ 3) .

(2.26)

As a consequence of the constraint in eq. (2.22), the propagator ∆′(x) is not a smooth function for
x 6= 0. In fact a little algebra shows that

�∆
′(0,x) =− Λ

(4π)1/2L3 +O(Λ0) (2.27)

for any x 6= 0. This non-local divergence will propagate into loops by generating unwanted mixing
with non-local operators. Let us see how in a particular example, which has been cooked up to show
this feature in a very simple diagram.
We consider the bare operator (�φ)2. In a local theory, the divergences generated by the insertion of
(�φ)2(x) in general expectation values can be subtracted by inserting local counterterms in x. These
counterterms are all possible local operators with the same quantum numbers as (�φ)2, and with
dimension not greater than 6. In other terms, a renormalized operator can be defined as follows

[(�φ)2]R(x) = (�φ)2(x)+ ∑
dO≤6

cαΛ
6−dO O(x)+ cidΛ

6 , (2.28)

where the cα ’s are O(λ ) coefficients which diverge at most logarithmically (cid is the so called mixing
with the identity). The renormalized operator is defined such that all expectation values of the form

〈φ(z1) · · ·φ(zn)[(�φ)2]R(x)〉 (2.29)

are finite in the Λ→ ∞ limit so long as all point are pairwise distinct. We will show explicitly that in
the theory with constraint (2.22), it is not possible to choose local counterterms as in eq. (2.28) so that
the following expectation value is finite

〈φ(z1)φ(z2)[(�φ)2]R(x)〉c . (2.30)

The connected expectation value is taken so to kill the mixing with the identity. We can calculate

〈φ(z1)φ(z2)(�φ)2(x)〉c = 2〈φ(z1)�φ(x)〉〈φ(z2)�φ(x)〉+

−λ

∫
d4y ∆

′(z1− y)∆′(z2− y)[�∆
′(x− y)]2 +O(λ 2) . (2.31)

The two-point functions in the r.h.s. have the same divergence as in eq. (2.27) when z1
0 = x0 for all

values of z1, or z2
0 = x0 for all values of z2. This divergence is obviously non-local. Even when this

divergence is avoided, the loop integral has extra divergences with respect to the infinite-volume case.

8
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The full analysis of divergences is quite tedious but straightforward. One can expand the propagators
∆′(x−y) inside the loop by means of eq. (2.23). It is interesting to look at one particular contribution,
i.e. the one that is obtained by replacing both loop propagators by −∆0(x0− y0). Some calculation
yields

−λ

∫
d4y ∆

′(z1− y)∆′(z2− y)[∂ 2
0 ∆0(x0− y0)]

2 =

=− λ

(8π)1/2L6 Λ

∫
d4y ∆

′(z1− y)∆′(z2− y)δ (y0− x0)+O(Λ0) . (2.32)

The appearance of this divergence is fairly simple to understand. If we set Λ = ∞ then by definition,

∂
2
0 ∆0(x0− y0) =−δ (x0− y0)+m2

∆0(x0− y0) , (2.33)

and when we square this expression, we get a [δ (x0− y0)]
2 which is a linear divergence, whose exact

value can be calculated only at finite regulator. The divergence in eq. (2.32) would be canceled by the
insertion in the r.h.s. of eq. (2.28) of the following operator

λ

2(8π)1/2L6 Λ

∫
d3y φ

2(x0,y) , (2.34)

which is obviously non local. Again the effect of non-locality shows as a non-commutation of limits.
If we take the infinite volume limit before the Λ→ ∞ limit, this contribution vanishes.
Even though renormalization at one loop of operators with dimension not greater than 4 seems to
happen in the same way as in infinite volume, I have shown that renormalization by local countert-
erms breaks down even at one loop for operators with high enough dimension. This will obviously
propagate into the Symanzik expansion of low dimensional operators (and in particular of the action)
with unexplored consequences.
Translating the above example to QEDL is not trivial, as the photon propagator cannot be decomposed
in a simple way as in eq. (2.23). Also one may need to go to higher order to reproduce an analogous
mechanism. A full analysis of the finite-volume divergences in QEDL is nowhere in sight, and I hope
that I have convinced the reader that this is not a trivial matter. The above analysis is maximally
relevant for strategies that rely on unphysically large values of αem as higher-loop effects are ampli-
fied, and on simultaneous extrapolations to L→ ∞ and a→ 0 as these two limits do not commute.
Precision can not be claimed without having the effects of non-locality under control.

2.4 A local formulation: QEDm

QEDm is defined by giving a mass to the photon, i.e. by replacing the action with

Sm(A,ψ, ψ̄)
def
= S(A,ψ, ψ̄)+

m2
γ

2

∫
d4x A2

µ , (2.35)

which gives a consistent (in particular, local) QFT in finite volume, defined order by order in the
perturbative expansion. The mass term introduces a soft breaking of gauge symmetry (like the gauge-
fixing term). The renormalization of QEDm is well understood. The mγ → 0 limit in infinite volume is
widely studied in the literature. However QEDm employs two IR regulators: the photon mass and the
finite volume. The L→ ∞ and mγ → 0 limits do not commute, and infinite-volume QED is recovered
only if the L→ ∞ limit is taken before the mγ → 0 limit. Non-commutation of limits makes usually
the extrapolation particularly challenging. However it has to be noted that, as long as mγ 6= 0, the
infinite-volume limit is reached easily as the finite-volume corrections are exponentially small (e.g.
for masses of stable states). I want to investigate here a bit more in detail the implications of the
non-commutation of limits.

9
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The lengthy calculation in appendix C in the extended version shows that the fermion two-point
function in QEDm can be represented as follows

〈ψ(x)ψ̄(0+)〉m =
∑q∈Z4 e

− e2

2m2
γV

(Lq+x)2
µ 〈ψ(x)ψ̄(0+)e−

m2
γ

2
∫

d4z B2
µ (z)δQ,q〉TL

∑q∈Z4 e
− e2

2m2
γV

(Lq)2
µ 〈e−

m2
γ

2
∫

d4z B2
µ (z)δQ,q〉TL

, (2.36)

where Qµ is the electric charge (in units of e) operator defined by interpreting µ as temporal direction
and localized on the time-slice xµ = 0, i.e.

Qµ =
∫

d4z δ (zµ)ψ̄γµψ(z) . (2.37)

We want to study the mγ → 0 limit at fixed volume of the two-point function in time momentum
representation

C(t,p) def
=
∫

L1×L2×L3

d3x e−ipx 〈ψ(t,x)ψ̄(0+)〉m . (2.38)

In the mγ → 0 limit, the denominator of eq. (2.36) is dominated by the term q = 0, i.e.

∑
q∈Z4

e
− e2

2m2
γV

(Lq)2
µ 〈e−

m2
γ

2
∫

d4z B2
µ (z)δQ,q〉TL

mγ→0
= 〈δQ,0〉TL +O(m2

γ) . (2.39)

When the numerator of eq. (2.36) is plugged into eq. (2.38), the mγ → 0 limit is obtained by saddle
point. For 0 < t < L0/2 the saddle point is located at q = 0 and x = 0, while for L0/2 < t < L0 the
saddle point is located at q = (−1,0) and x = 0. Let us consider only the 0 < t < L0/2 case for
simplicity, i.e.

C(t,p)
mγ→0
=

(2πe−2m2
γV )3/2

〈δQ,0〉TL
e
− e2

2m2
γV

t2

〈ψ(t,0)ψ̄(0+)δQ,0〉TL{1+O(m2
γ)} . (2.40)

The two-point function vanishes exponentially in the mγ → 0 limit for t 6= 0 as it should, since large
gauge transformations become symmetries in the mγ → 0 limit. Moreover the leading term in the
mγ → 0 limit does not depend on the momentum p, as a direct consequence of the fact that the
integral is dominated by the value of the integrand at x = 0. At this order, the effective mass is

meff(t,p)
def
= − d

dt
lnC(t,p) =

e2

m2
γV

t− d
dt

ln〈ψ(t,0)ψ̄(0+)δQ,0〉TL +O(m2
γ) . (2.41)

The term proportional to t in the effective mass is the one identified in [35]. Notice that this term
vanishes in the infinite-volume limit and diverges in the mγ → 0 limit. Even if this term is removed
by hand, the non-commutation of limits is not resolved. If mγ is too small, the physical dependence
of the effective mass on the momentum is suppressed, and effectively one is just using a complicated
method to extract the QEDTL effective mass in coordinate space. In this regime it would be impossible
to construct states with definite momentum, which are necessary e.g. in the calculation of transition
amplitudes. It is worth noticing that the term proportional to t is large in the exploratory study in [35],
which suggests in fact that this study is performed in the regime in which eq. (2.41) is valid. A
possible way to verify or disprove this is to calculate the effective mass at different values of p and
check whether it is constant or not.

2.5 A local formulation: QEDC

QEDC is defined by means of C? boundary conditions (a.k.a. C-parity boundary conditions) along the

10
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spatial directions for all fields,

Aµ(x+Lkk̂) =−Aµ(x) , ψ(x+Lkk̂) =C−1
ψ̄

T (x) , (2.42)

where C is the charge-conjugation matrix for spinors. QEDC is a consistent (in particular, local) QFT
at finite volume, defined order by order in the perturbative expansion. Some features and delicate
aspects of QEDC are listed in the following.

• The total electric charge is not constrained to be zero by the Gauss law

Q =
∫
T3

d3x j0(t,x) =
∫
T3

d3x∂kEk(t,x) =−2∑
k

∫
d3x δ (xk) Ek(t,x) , (2.43)

since the electric field is antiperiodic in the spatial directions. In other works, the electric flux
produce by a particle can escape the torus and be eaten by the image particle (which has opposite
charge).

• Large gauge transformations of the form (2.4) do not leave the photon field boundary conditions
inveriant and are therefore not a symmetry of the theory.

• Charge conservation and, similarly, flavor conservation are partially broken by the boundary
conditions. The electric charge Q is not conserved, but the quantum number (−1)Q is. The
same happens for each individual flavor number. This is enough to protect all stable mesons
and most of the stable baryons from unphysical decays. Some baryons, that would be stable in
infinite volume, mix with lighter ones because of the boundary conditions (e.g. Ξ− mixes with
p). In effective masses this effect appears (again!) as a non-commutation of IR limit

meff(t|L) =− lim
T→∞

d
dt

ln
∫

d3x 〈Ξ†
−(t,x)Ξ−(0,x)〉

def
= − d

dt
lnC(t|L) , (2.44)

lim
t→∞

lim
L→∞

meff(t|L) = MΞ− , lim
L→∞

lim
t→∞

meff(t|L) = Mp . (2.45)

These spurious mixing are due to flavored mesons traveling around the torus and are suppressed
exponentially with the volume, more precisely the following decomposition for the correlator
C(t|L) exists

C(t|L) =C0(t|L)+ e−µLC1(t|L) , (2.46)

where both C0(t|L) and C1(t|L) are finite in the L→ ∞ limit at fixed t, and also

− lim
t→∞

d
dt

lnC0(t|L) = MΞ−(L) , − lim
t→∞

d
dt

lnC1(t|L) = Mp(L) . (2.47)

The suppression exponent e−µL is calculated to be O(10−10) at physical quark masses and
MπL = 4.

• The partial breaking of flavor symmetry does not affect the renormalization of composite op-
erators. Thanks to locality, the divergent part of the renormalization constants does not depend
on the volume.

• The non-universal finite volume corrections to the hadron masses vanish as L−4 (as opposed to
L−3 in QEDL).

• A gauge-invariant representation for the charged-state interpolating operators is possible.

11
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3. IR divergences and decay rates

In this section I will briefly discuss radiative corrections to decay rates. Subsection 3.1 is completely
textbook, and contains a review of some basic facts about IR soft divergences. I have chosen to
include this subsection since IR divergences do not belong to the standard toolbox of the lattice com-
munity. Subsection 3.2 is a review of the exploratory calculation of the pion and kaon decay rate at
O(αem) presented at this conference by the RM-SOTON collaboration. This subsections gives me
the chance also to discuss the separation of radiative corrections in a universal piece (a.k.a. inner-
bremsstrahlung) and a structure-dependent piece, which is a useful tool for numerical simulations,
and it is also fundamental in order to understand the jargon of the experimentalist and the phenome-
nologist. Finally in subsection 3.3 I argue that radiative corrections can be enhanced by large log-
arithms due to quasi-collinear divergences in decay rates of heavy mesons. This phenomenology is
completely non-perturbative and hinders the reliability of phenomenological estimates of radiative
corrections. It is where our community may be able to give an important contribution hopefully in the
near future.

3.1 Some facts about soft divergences

If one wants to extract S-matrix elements from numerical simulations when QCD is coupled to QED,
besides dealing with the standard complications due to the Euclidean setup and the finite volume, one
has to deal also with IR divergences. We assume that all charged asymptotic particles are massive. In
this case IR (soft) divergences are due to soft photons (i.e. photons with four-momentum k, such that
k2 is asymptotically small) in loops and in the final state.

pµ

pe

pνµ

pν̄e

k

Figure 1: Feynman diagram that contributes to the µ−→ e−+ ν̄e +νµ amplitude at order αem. The gray circle
represents the insertion of the EW effective Hamiltonian. The loop integral is IR divergent.

Let us review briefly how soft divergences are generated in loops. Roughly speaking they are due to
the fact that the photon propagator 1/k2 is singular when k2 → 0. However it has to be noted that
this singularity is integrable, hence generally not enough to produce a divergence in the Feynman
integrals. In fact n-point functions in coordinate space (both in Minkowskian and Euclidean space-
time) are IR finite. Soft divergences appear in 1PI diagrams when external momenta are chosen on the
mass shell. In order to illustrate how this happens, let us consider the EW decay µ−→ e−+ ν̄e +νµ .
For simplicity we can work with Fermi’s effective theory (i.e. in the MW → ∞ limit), and consider
the one-loop 1PI diagram in figure 3.1. The S-matrix element is calculated by setting the external
momenta on the mass-shell, i.e. p2

µ =−m2
µ and p2

e =−m2
e (in Euclidean notation). If k is the photon

momentum, the charged-particle propagators inside the loop are
−i(6 p?+ 6 k)+m?

(p?+ k)2 +m2
?

=
−i(6 p?+ 6 k)+m?

2p?k+ k2 =
−i 6 p?+m?

2p?k
+O(k0) . (3.1)

12
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In the k→ 0 limit the charged propagators go on-shell and contribute with a k−1 singularity to the
loop integrand. Since there is two of them, and a photon propagator, the loop integral restricted to the
soft region is proportional to∫

k2<Λ

d4k
(2π)4

1
2pµk

1
2pek

1
k2 , (3.2)

which is logarithmically divergent. Notice that only one singular matter propagator would not be
enough to generate the divergence.
At fixed order in αem transition amplitudes are IR divergent because of loops of soft photons. Bloch
and Nordsieck [40] pointed out that these divergences cancel in decay rates, when integrated over an
arbitrary number of soft photons in the final state. Let us review briefly the physics significance of the
Bloch-Nordsieck cancellation mechanism and how it works. Let us consider a generic process α→ β

involving any number of hard particles of any kind. Let pn be the momentum of the n-th particle in
this process. Let us consider also the process α→ β +Nγ in which the final state contains also N soft
photons, with the following properties

1. the n-th incoming particle has momentum p′n = pn;
2. the n-th outgoing hard particle has momentum p′n, with |p′n−pn|< ∆p;
3. each soft outgoing photon has energy less than ∆E.

If ∆E and ∆p are the energy and momentum resolution of the detector, then the two processes are
experimentally indistinguishable. The probability rate to transition from α to β turns out to be in-
finite at any order in αem beyond tree-level. However this probability rate is not relevant from the
experimental point of view. In fact only the probability rate to transition from α to any final state that
is experimentally indistinguishable from β is relevant. It turns out that the latter probability rate is IR
finite at any order in the perturbative expansion.
Let us try to be a bit more precise.2 Let us introduce an IR regulator, e.g. a mass mγ for the photon.
Let Mαβ (k1, . . . ,kN ;mγ) be the transition amplitude for the process α → β +Nγ , where kr is the
momentum the r-th soft photon. Notice that the soft photons cannot carry a large amount of total
energy away (even if N is large and mγ = 0), otherwise by energy conservation the energy of some of
the outgoing particles would be notably affected. Therefore it makes sense to consider the transition
rate summed over any number of outgoing soft photons with individual energy less than ∆E and total
energy less then ET = O(∆p), i.e.

Γαβ (∆E,ET ;mγ) = (3.3)

= Nα

∞

∑
N=0

1
N!

∫
|kr|<∆E

∑
N
r=1 |kr|<ET

{
N

∏
r=1

d3kr

(2π)32(m2
γ +k2)1/2

}∣∣Mαβ (k1, . . . ,kN ;mγ)
∣∣2 ,

where Nα is a normalization factor depending only on the initial state, and the sum over the po-
larizations of the soft photons is understood. The nontrivial fact about soft divergences is that the
asymptotic behaviour of the transition amplitude in the mγ → 0 and k→ 0 limit is calculable at all
orders in the perturbative expansion

Mβα(k1, . . . ,kN ;mγ)
k∼mγ→0
' M̂βα(µ)

(
mγ

µ

) αem
2 Aβα N

∏
r=1

∑
n

eqnηn pn · ε∗r
pn · kr

. (3.4)

2The upcoming discussion is textbook (see e.g. section 13.4 in [41]). The concepts of factorization, exponentiation and
universality of soft divergences have their root in the fundamental work of Yennie, Frautschi, Suura [42], and Grammer,
Yennie [43], and have been beautifully summarized by Weinberg [44]. The interpretation of IR divergences as break-down
of the perturbative expansion of transition amplitudes has been analyzed in detail by Lee and Nauenberg [45].
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Here pn, mn, and qn are the four-momentum, mass and electric charge (in units of e) of the n-th
hard particle, while ηn is defined to be equal to +1 and −1 for particles in the final and initial state
respectively. kr and εr are the four-momentum and polarization four-vector of the r-th soft photon. µ

is an arbitrary energy scale introduced to the sole purpose to match the dimensions, M̂βα(µ) does not
depend on mγ . Finally Aβα is a known exponent

Aβα

def
= − 1

2π
∑
nm

qnqmηnηm

βnm
ln

1+βnm

1−βnm
+ i ∑

n 6=m

qnqm

βnm
δηn,ηm , (3.5)

βnm
def
=

√
1− m2

nm2
m

(pn · pm)2 . (3.6)

It is usually said that soft divergences factorize, since the virtual soft photons contribute to the tran-
sition amplitude with the factor (mγ/µ)

αem
2 Aβα , and each real soft photon contributes with a factor

∑n eqnηn(pn · ε∗r )/(pn · kr). It is also usually said that soft divergences are universal in the sense that
these factors are completely determined by masses, charges and momenta of the particles in the initial
and final states. In particular the factors depend neither on the microscopic interactions that produce
the scattering process nor on the spin and internal structure of the particles.

Notice that the virtual-photon factor gives contributions to all orders in the perturbative expansion.
The real part of Aαβ is proven to be always positive, therefore the formally resummed transition
amplitude vanishes when the IR regulator is removed while the momenta of the soft photons are kept
small but non-vanishing. This phenomenon is known as evaporation of the S-matrix.3 If ∆E, ET and
mγ are small enough, one can plug the approximation (3.4) into the formula (3.3) for the integrated
transition rate. Because of the singularity at kr → 0, the phase-space integral in eq. (3.3) diverges
when the IR regulator is removed. This divergence compensates exactly the vanishing factor due to
virtual soft photons, so that the transition probability rate becomes finite and non-zero in the mγ → 0
limit,

Γαβ (∆E,ET ) = lim
mγ→0

Γαβ (∆E,ET ;mγ)
∆E∼ET→0
'

'NαF(∆E
ET

,ReAβα)

(
∆E
µ

)αemReAβα

|M̂βα(µ)|2 , (3.8)

where F(x,A) is a known kinematic function which is reported for completeness

F(x,A) =
1
π

∫
∞

−∞

du
sinu

u
exp
(

αemA
∫ x

0
dω

eiωu−1
ω

)
. (3.9)

Notice that the transition rate in the resummed form (3.8) is finite for any value of ∆E and vanishes in

3When expanded to a given order in αem, the exponential factor

(
mγ

µ

) αem
2 Aβα

=
∞

∑
N=0

1
N!

(
αem

2
Aβα ln

mγ

µ

)N
. (3.7)

generates logarithmic divergences. At fixed order in the perturbative expansion the transition amplitude does not vanish in
the mγ → 0 limit as in the resummed case, on the contrary it diverges logarithmically. This phenomenon may look counter-
intuitive, but the mathematical mechanism behind it is quite trivial and shows that the perturbative expansion is broken by
large calculable IR logarithms.
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the ∆E→ 0 limit. However at fixed order in the perturbative expansion

Γαβ (∆E,ET )
∆E∼ET→0
' NαF(∆E

ET
,ReAβα)

(
1+αemReAβα ln

∆E
µ

)
|M̂βα(µ)|2 +O(α2

em)

(3.10)

the transition rate is logarithmically divergent in the ∆E → 0 limit. This divergence is not real, but it
signals the breakdown of the perturbative expansion in processes with soft photons in the final state.
If we consider for instance the leptonic decay of the hadron h− → `−+ ν̄`, then one can calculate
explicitly

Aβα =
2
π

{
m2

h +m2
`

m2
h−m2

`

ln
mh

m`
−1
}
=


2.9(1) for π−→ e−+ ν̄e

1.6(1)×10−2 for π−→ µ−+ ν̄µ

5.2(1) for B−→ e−+ ν̄e

1.9(1) for B−→ µ−+ ν̄µ

. (3.11)

For a back-of-the-envelope calculation, one can take µ equal to the largest scale in the problem, i.e.
the hadron mass, and calculate ∆E with the property that for all ∆E < ∆E the O(αem) corrections are
larger than 10%, i.e.

∆E '


0.5 MeV for π−→ e−+ ν̄e

10−362 MeV for π−→ µ−+ ν̄µ

400 MeV for B−→ e−+ ν̄e

3 MeV for B−→ µ−+ ν̄µ

. (3.12)

Notice that this energy varies a lot with the process. It is obvious that higher-order radiative corrections
may become relevant only if large scale separations exists.

3.2 RM-SOTON calculation

The RM-SOTON collaboration has presented a strategy and preliminary results for the calculation of
the probability rate for the process

h−→ `−+ ν̄`(+γ) (3.13)

with h = π,K at order αem [15, 16, 17, 18]. Notice that at this order, at most one photon can be
produced in the final state. In infinite volume, the relevant transition amplitudes have the following
behaviour in the mγ → 0 limit, which is obtained by expanding eq. (3.4),

M0γ(mγ) =

(
1+

αem

2
A ln

mγ

µ

)
M̂(0)

0γ
+αemM̂(1)

0γ
(µ)+O(αemmγ)+O(α2

em) , (3.14)

M1γ(k;mγ) = α
1/2
em M̂(0)

1γ
(k)+O(α

1/2
em mγ)+O(α

3/2
em ) . (3.15)

As a special case of eq. (3.3), the decay rate in the center-of-mass frame and integrated over the soft
photon is

Γ(∆E,mγ) = Γ0γ(mγ)+Γ1γ(∆E,mγ)+O(α2
em) , (3.16)

Γ0γ(mγ) =
1

2mh
|M0γ(mγ)|2 , (3.17)

Γ1γ(∆E,mγ) =
1

2mh

∫
|k|<∆E

d3k
(2π)32(m2

γ +k2)1/2 |M1γ(k;mγ)|2 . (3.18)

The basic idea of the RM-SOTON collaboration is to exploit universality to reshuffle the IR diver-
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gences in a convenient way. Let us consider the auxiliary quantum field theory for hadron, leptons,
neutrinos and photons, in which all particles are described as fundamental fields and charged particles
are minimally-coupled to photons. In this auxiliary theory the electroweak transition is generated at
tree-level by an effective operator of dimension 5 (which can be found in [18]). This auxiliary quan-
tum field theory is usually referred to as point-like approximation, as it could be seen as the leading
order of a general effective field theory. The normalization of the effective EW Hamiltonian in the
point-like approximation is chosen in such a way that the tree-level amplitude matches the one in the
fundamental theory, i.e.

M̂(0)
PT,0γ

= M̂(0)
0γ

, (3.19)

where the subscript PT denotes quantities calculated within the point-like approximation. Then one
defines the structure-dependent (SD) decay rates by subtracting the point-like approximation to the
full decay rate, i.e. ΓSD,? = Γ?−ΓPT,?. In particular

Γ(∆E,mγ) = ΓPT(∆E,mγ)+ΓSD,0γ(mγ)+ΓSD,1γ(∆E,mγ)+O(α2
em) . (3.20)

The crucial observation is that the three terms in the r.h.s. of the above equation are IR finite, and can
be calculated separately.

1. The first term in the r.h.s. of eq. (3.20) is IR finite thanks to the Bloch-Nordsieck cancellation
mechanism applied to the point-like approximation,

ΓPT(∆E) def
= lim

mγ→0
ΓPT(∆E,mγ)< ∞ . (3.21)

Moreover this term is analytically calculable, given the tree-level amplitude, i.e. Fh.

2. Let us look at second term in the r.h.s. of eq. (3.20). First we notice that a formula, similar to
eq. (3.14), holds for the transition amplitude calculated in the point-like approximation. More-
over the radiative function A is the same in the full theory and in the point-like approximation,
as it depends only on masses, charges and kinematics. Therefore

ΓSD,0γ

def
= lim

mγ→0
ΓSD,0γ(mγ) =

1
2mh

lim
mγ→0

{
|M0γ(mγ)|2−|MPT,0γ(mγ)|2

}
=

=
1

2mh
lim

mγ→0

(
1+αemReA ln

mγ

µ

){
|M̂(0)

0γ
|2−|M̂(0)

PT,0γ
|2
}
+

+
αem

mh
Re
{
[M̂(0)

0γ
]∗M̂(1)

0γ
(µ)− [M̂(0)

PT,0γ
]∗M̂(1)

PT,0γ
(µ)
}
+O(α2

em) =

=
αem

mh
Re [M̂(0)

0γ
]∗[M̂(1)

0γ
(µ)− M̂(1)

PT,0γ
(µ)]+O(α2

em)< ∞ , (3.22)

which shows that ΓSD,0γ is IR finite as a consequence of the matching condition (3.19). The
RM-SOTON collaboration proposes to calculate ΓSD,0γ from lattice simulations, where the box
size L acts as IR regulator. If we denote by Γ̃SD,0γ(L) the decay rate in finite volume, the
infinite-volume limit is found to be reached up to 1/L2 corrections [16]

Γ̃SD,0γ(L) = ΓSD,0γ +O(L−2) . (3.23)

This result is nontrivial, as both the point-like and full decay rate have a 1/L term (along with
the lnL IR divergence) whose coefficient is fixed by the gauge Ward identities and general
analyticity properties of the effective vertices. 4

4In fact this is a nontrivial consequence of the Low and Gell-Mann theorem [46, 47].
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3. Finally the third term in the r.h.s. of eq. (3.20) is IR finite since the l.h.s. of eq. (3.20) is IR
finite, i.e.

ΓSD,1γ(∆E) def
= lim

mγ→0
ΓSD,1γ(∆E,mγ)< ∞ . (3.24)

If ∆E is asymptotically small, the PT contribution ΓPT(∆E) blows up logarithmically signalling
break-down of the perturbative expansion, while the SD contribution ΓSD,1γ(∆E) vanishes lin-
early. In the case of the pion decay, a window in ∆E exists such that both the O(α2

em ln2
∆E)

corrections and ΓSD,1γ(∆E) are negligible. It is shown in [15] that reasonable values of ∆E for
which this happens (independently of the lepton in the final state) are in the region of 10–50
MeV. The existence of such window is very much process dependent, and is expected not to
hold in processes involving large scale separation because of large logarithms in the coefficients
of the ∆E expansion. In general ΓSD,1γ(∆E) should be calculated from lattice simulations as
well.

The preliminary results presented by the RM-SOTON collaboration [17] are obtained in the electro-
quenched setup (i.e. photons couple only to the valence quarks, but not to the sea quarks), with the
QEDL prescription. The infinite-volume extrapolation of the SD contribution to the decay rate with no
photons in the final state has been performed by fitting the coefficient first unknown L−2 correction,
according to the theoretical analysis presented in [16]. Observables have been calculated with the
RM123 method. For the π → µ +ν process they report for instance

ΓNLO(∆E ' 30 MeV)

ΓLO
= 1.0210(15)(. . .)qQED . (3.25)

3.3 Large collinear logarithms

The decomposition of decay rates in point-like and structure-dependent contributions is completely
general. At fixed order in the perturbative expansion the point-like contribution contains the singular
part in ∆E, which is the physical remnant of the soft divergences in the amplitudes. Soft divergences
are the only IR divergences in QED if all charged particles are massive. In the limit in which some
charged particles become massless new divergences arise. As we will see, these divergences are
generated by non-integrable angular singularities in Feynman diagrams, and are therefore referred to
as collinear divergences.
The simplest example of collinear divergences is found in the factor Aβα in eq. (3.11) for the process
h→ `+ν in the limit m`→ 0, i.e.

Aβα

m`�mh' 2
π

ln
mh

m`
→ ∞ . (3.26)

In the real world charged particles are massive. When the considered process involves large scale
separations large logarithms arise as a remnant of collinear divergences. The divergence in eq. (3.26)
arises from virtual soft photons that are emitted in a direction parallel to the momentum of the hard
lepton. However collinear divergences arise also when the photon is not soft, as we will try to argue
with a specific example.
Let us consider again the leptonic decay of the hadron h−→ `−+ ν̄`. Let Γµ(p,k) be the effective ver-
tex hhγ where k is the photon incoming momentum, p and−p−k are the hadron incoming momenta,
and let

∆(p) =
Z(p)

p2 +m2
h

(3.27)
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ph

p`

pν

k

Figure 2: Contribution with one virtual photon to the skeleton expansion of the h−→ `−+ ν̄`. The gray circle
represents the insertion of the EW effective Hamiltonian, while the white circle represents the effective vertex
hhγ .

be the dressed propagator of the hadron. Let us look at the particular contribution to the transition
probability represented in fig. 3.3. This contribution contains the integral

Nµ

∫ dk0

2π

∫
ΛIR<|k|<ΛUV

d3k
(2π)3

Γµ(p̄h,k)Z(p̄h + k)
k2(2 p̄h · k+ k2)(2 p̄` · k+ k2)

, (3.28)

where Euclidean notation has been used, the on-shell four-momenta are p̄h = (imh,0) and p̄` =
(iE`,p`), and Nµ is an overall normalization that depends on the kinematic variables, polarizations
and the Fermi constant. The IR cutoff has been introduced in order to isolate the hard-photon contri-
bution, and the UV cutoff has been introduced in order to avoid confusion with UV divergences. The
integral over k0 can be performed by closing the integration path at infinity in the complex plane. One
gets contributions from several poles. We are interested in the contribution from either of the photon
poles k̄ = (±i|k|,k) which is

Nµ

8mh

∫
ΛIR<|k|<ΛUV

d3k
(2π)3

Γµ(p̄h, k̄)Z(p̄h + k̄)

|k|2
(
|k|
√

m2
` +p2

` ∓p`k
) . (3.29)

In spherical coordinates with z= cosθ = p`k/(|p`| |k|) it becomes apparent that the hadron propagator
has a non-integrable singularity at z = ±1 (the sign depends on which photon pole we have chosen)
for m` = 0, which translate into a logarithmic divergence for m` small with respect to |p`| = (m2

h−
m2
`)/(2mh), or equivalently m` small with respect to mh,

Nµ

8(2π)3mh|p`|

∫
ΛUV

ΛIR

dk
k

∫ 2π

0
dφ

∫ 1

−1
dz

Γµ(p̄h, k̄)Z(p̄h + k̄)√
1+ m2

`

p2
`
∓ z

m`�mh'

'
Nµ

8π2m2
h

∫
ΛUV

ΛIR

dk
k

[
Γµ(p̄h, k̄)Z(p̄h + k̄)

]
k̂=±p̂`

ln
mh

m`
. (3.30)

This formula shows explicitly that the collinear divergence ln(mh/m`) gets contributions from virtual-
photons poles with spatial momentum parallel to the light-lepton momentum but with arbitrary modu-
lus. In particular these contributions are not universal, in the sense that they read the internal structure
of the hadron (encoded in the effective vertex and dressed propagator away from the mass-shell).

The presence of quasi collinear divergences is only one of the mechanisms that could enhance the
structure-dependent part of the radiative corrections to decay rates of heavy mesons. The existence
of resonances slightly heavier than the stable hadron, which can go almost on-shell in radiative pro-
cesses [48, 26] is another possible mechanism. The inherently non-perturbative nature of these phe-
nomena makes their estimate quite difficult.
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