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The sign problem of finite-density QCD at the zero temperature becomes very severe if the quark
chemical potential exceeds half of the pion mass. In order to understand its property, we consider
the sign problem of the one-site fermion model appearing in its path-integral expression by using
the Lefschetz-thimble method. We show that the original integration cycle becomes decomposed
into multiple Lefschetz thimbles at a certain value of the fermion chemical potential, which would
correspond to half of the pion mass of finite-density QCD. This triggers a fictitious phase tran-
sition on each Lefschetz thimble, and the interference of complex phases among them plays an
important role for the correct description of the system. We also show that the complex Langevin
method does not work in this situation.
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1. Introduction

QCD at finite density is an important subject for both theoretical and experimental nuclear
physics, but the first principle approach based on lattice numerical simulation suffers from the sign
problem [1]. Especially, the sign problem of finite-density QCD becomes very severe when quark
chemical potential exceeds half of the pion mass in the conventional reweighting method [2], and
we must understand properties of the functional integral itself to overcome this problem [3]. This
article reviews the study of the sign problem of (0+1)-dimensional fermion model using the path
integral on Lefschetz thimbles [4]. Complex Langevin method is also discussed for this model [5].

2. One-site Hubbard model and Silver Blaze problem

In order to understand the property of the Silver Blaze problem from the viewpoint of com-
plexification, we apply the Lefschetz-thimble method to the one-site fermion model:

Ĥ =Un̂↑n̂↓−µ(n̂↑+ n̂↓). (2.1)

One can exactly compute its partition funtion as Z = tr[e−β Ĥ ] = 1+2eβ µ +eβ (2µ−U). To show that
its path-integral expression suffers from the severe sign problem, let us write down the effective
action of this model with the Hubbard–Stratonovich field ϕ [4]:

S =
ϕ2

2U
+ψ

∗
[

∂τ −
(

U
2
+ iϕ +µ

)]
ψ, (2.2)

where ψ = (ψ↑,ψ↓). The Hubbard–Stratonovich field ϕ is related to the number density n by
n = Im〈ϕ〉/U . The Yukawa coupling, iψ∗ϕψ , is complex and this is the origin of the sign problem
of this model. This is equivalent to the (0+ 1)-dimensional massless Thirring model, and see
Refs. [6] for relevant studies of (0+1)-dimensional massive Thirring model. The fermions do not
couple with the non-zero Matsubara modes of ϕ , i.e., the fermion determinant is

Det
[

∂τ −
(

U
2
+ iϕ(τ)+µ

)]
=
(

1+ e−
∫ β

0 dτ(−U/2−iϕ(τ)−µ)
)2

.

The path integral of our interest is now reduced to an integral of zero Matsubara mode ϕbg =∫ β

0 dτϕ(τ)/β , and the partition function becomes

Z =

√
β

2πU

∫
R

dϕbg

(
1+ eβ(iϕbg+µ+U/2)

)2
e−βϕ2

bg/2U . (2.3)

Let us mention the property of the sign problem of (2.3) in the zero-temperature limit, and
compare it with that of finite-density QCD. When µ < −U/2, the fermion determinant converges
to 1 in the limit β → ∞ since eβ(iϕbg+µ+U/2)→ 0. This means that the sign problem at µ <−U/2
is exponentially tiny at low temperatures. At µ = −U/2, the fermion spectrum becomes gapless.
The sign problem becomes severe for µ > −U/2, and the mean-field number density becomes
nonzero. The same thing can be discussed for the case of QCD by paying attention to the spectrum
of γ0( /D(A) +m) [3]. The sign problem becomes severe after half of the pion mass because of
fictitious pion condensation. Since nothing should happen at half of the pion mass because there
is no such a light baryon, this is called the baryon Silver Blaze problem. In our case, the lowest
energy of (2.1) is zero, so the mean-field onset of the number density at µ =−U/2 is also fictitious.
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3. Lefschetz-thimble method

Let us consider a generic situation that the partition function is given by

Z =
∫
Rn

dnx e−Seff(x), (3.1)

where Seff(x) is a complex-valued effective action. The idea of the Lefschetz-thimble method is
that the original integration region Rn is not necessarily the best option after complexifying the
integration variables x j 7→ z j = x j + iy j. In the case of one-variable integrals, the best option would
be steepest descent paths and one can deform R to the sum of them by using Cauchy’s theorem.
Lefschetz thimbles are higher dimensional generalization of steepest descent paths, and this notion
starts to get attention in the context of the sign problem quite recently [7].

Each Lefschetz thimble is an n-dimensional space spanned around a saddle point zσ in Cn

(σ ∈ Σ). Using the gradient flow by introducing a flow time t [8]:

dzi(t)
dt

=

(
∂Seff(z(t))

∂ zi

)
, (3.2)

one defines the Lefschetz thimble and its dual as

Jσ :=
{

z(0)
∣∣∣ lim

t→−∞
z(t) = zσ

}
, Kσ :=

{
z(0)

∣∣∣ lim
t→+∞

z(t) = zσ

}
, (3.3)

respectively. The path integral (3.1) is now written as

Z = ∑
σ∈Σ

〈Rn,Kσ 〉
∫

Jσ

dnz e−S(z), (3.4)

where the coefficient 〈Rn,Kσ 〉 is the intersection number between Rn and Kσ . The validity of this
method with fermion determinant is discussed in Refs. [9].

4. Semiclassical analysis of one-site Hubbard model using Lefschetz thimbles

Let us apply the Lefschetz-thimble method to the path integral (2.3). The effective action is

Seff(z) =
β

2U
z2−2ln

(
1+ expβ

(
iz+µ +

U
2

))
. (4.1)

The effective action satisfies the CK symmetry ensuring the real-valuedness of the Lefschetz-
thimble decomposition manifestly [10].

In the low-temperature limit T �U, |µ|, we can find the saddle points of Seff as [4]

zm = i
(

µ +
U
2

)
+T

(
2πm+ i ln

3
2U−µ

1
2U +µ

)
+O(T 2) (4.2)

for m ∈ Z. If µ > 3U/2 or µ <−U/2, we can also find another saddle point,

z∗ =

{
2iU +o(T ) for µ/U > 3

2 ,

0+o(T ) for µ/U <−1
2 .

(4.3)
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Figure 1: Behaviors of the gradient flow equation for βU = 30, U = 1, and µ/U =−1 (a) [µ/U = 0 (b)] [4].
Star-shape black points show singular points of logarithm, and red blobs are zσ .

Behaviors of the gradient flow equation (3.2) are shown in Fig. 1 with U = 1 and βU = 30.
Fig. 1a shows the flow when the chemical potential is sufficiently large and negative (µ/U =−1).
Only one Lefschetz thimble J∗ associated with z∗ contributes, and J∗ is almost identical with R
because the sign problem is exponentially weak. The number density is

n' −iz∗
U

= 0. (4.4)

In the following, let us consider the case with the difficult Silver Blaze problem, −1/2 .
µ/U . 3/2, at low temperatures βU & 10. In this case, the behavior of the gradient flow is shown
in Fig. 1b. All dual thimbles Km intersect with R, which means that all the saddle points zm

contribute to the partition function. If one neglects this fact and picks up the single saddle point z0,
the mean-field approximation is recovered to find that

nMF =
1
U

Im(z0) =
µ

U
+

1
2
. (4.5)

This is completely wrong, since n = 0 for µ < 0.
We compute the classical actions Sσ := Seff(zσ ) in the low temperature limit as

S0 '−βU
2

(
µ

U + 1
2

)2
, (4.6)

Re(Sm−S0)' 2π2

βU m2, (4.7)

ImSm ' 2πm
(

µ

U + 1
2

)
. (4.8)

According to (4.7), subdominant thimbles Jm contribute comparably with the dominant one J0

for βU � 1 so long as |m|(6= 0) is not too large. To consider the impact of interference among
multiple complex saddles, we consider the classical approximation of the partition function:

Zcl :=
∞

∑
m=−∞

e−Sm = e−S0(µ)θ3

(
π

(
µ

U
+

1
2

)
,e−2π2/βU

)
. (4.9)

Using this result, in the limit βU → ∞, the number density is given as

ncl :=
1
β

∂

∂ µ
lnZcl→


2 (1 < µ/U < 3/2),
1 (0 < µ/U < 1),
0 (−1/2 < µ/U < 0).

(4.10)
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Figure 2: Number density as a function of µ at βU = 30 [4]. 1-, 3-, 5-thimble results are computed by
taking into account J0, J0∪J±1, J0∪J±1∪J±2, respectively.

This success indicates the usefulness of the semiclassical approximation even when the sign prob-
lem is severe.

How many Lefschetz thimbles are relevant in the sum (4.9) at a given lower temperature β?
We propose the criterion to neglect the Lefschetz thimbles Jm for large |m|,

∣∣∣Z(2m+1)
cl −Z(2m−1)

cl

∣∣∣�
|Z(2m+1)

cl |, where Z(2m+1)
cr = ∑

m
n=−m e−Sn . Solving this condition at µ = 0, we find that

|m|& βU
4π

(4.11)

in the limit of βU� 1. It means that we need at least (2dβU/4πe+1) thimbles in order to describe
the rapid crossover of the number density in the case of the one-site Hubbard model [4].

By performing the exact computation of the path integral on Lefschetz thimbles, we can indeed
check that above semiclassical analysis gives the correct result in this model. The result for the
number density at βU = 30 is shown in Fig. 2, and we can see the impact of the interference
among complex saddles.

5. Comment on the failure of complex Langevin method

We can show and confirm that the complex Langevin method does not work in the one-site
Hubbard model at −1/2 < µ/U < 3/2. More generally, if there are several complex saddle points
that dominantly contribute with different complex phases, we can prove that the complex Langevin
method does not work when the semiclassical analysis is valid [5]. Let us denote the set of dominant
complex saddles by {zδ}δ∈∆ (∆ ⊂ Σ), then the complex-Langevin expectation value 〈·〉CL of a
holomorphic operator O(z) is well approximated by

〈O(z)〉CL = ∑
δ∈∆

cδ O(zδ ). (5.1)

Here cδ ≥ 0 because the expectation value 〈·〉CL is defined by the ensemble average of the stochastic
process. As the hypothesis for contradiction, we suppose that the complex Langevin method gives
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(a) Complex Langevin distribution and Lefschetz
thimbles
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(b) Number density at βU = 30

Figure 3: Results of the complex Langevin method for the one-site Hubbard model [5].

the same result with the original path integral. Under this hypothesis,

〈O(z)〉CL =
1
Z

∫
dxe−Seff(x)O(z) = ∑

σ∈Σ

〈R,Kσ 〉
Z

∫
Jσ

dze−Seff(z)O(z)

' ∑
δ∈∆

〈R,Kδ 〉
Z

√
2π

S′′eff(zδ )
e−Seff(zδ )O(zδ ). (5.2)

This claims that cδ = 〈R,Kδ 〉
Z

√
2π

S′′eff(zδ )
e−Seff(zδ ) ≥ 0 for all δ ∈ ∆. This is the contradiction, and the

complex Langevin method is wrong in this situation.
Let us show, in Fig. 3, the numerical results of the complex Langevin method for the one-site

Hubbard model at βU = 30. Fig. 3a compares the complex Langevin distribution (blue circles) and
profiles of Lefschetz thimbles (red curves) at µ = 0, and complex Langevin distribution is divided
into several regions. Red squares of Fig. 3b show the number density by complex Langevin method,
which give wrong mean-field results, nMF. In order to emphasize again the importance of phases,
we perform the reweighting in the complex Langevin method by assigning the phase factor of
Lefschetz thimbles to each local distribution of the complex Langevin method [5]. The result is
shown by blue circles in Fig. 3b, and the result is clearly improved by this procedure.

6. Summary

We study the one-site Hubbard model using the Lefschetz-thimble method especially at low
temperatures. In the path-integral expression, this model has a sign problem and the property of the
Silver Blaze problem is very similar to that of finite-density QCD with light quarks. At the chemical
potential where the complex mean-field approximation becomes bad, Stokes phenomenon happens
and the original integration cycle starts to be decomposed into several Lefschetz thimbles. In order
to get the correct answer, the summation over Lefschetz thimbles has a significant effect, which has
a milder sign problem compared with the original integration. It is natural to guess that the same
thing happens also for finite-density QCD beyond half of the pion mass.

We also discuss the complex Langevin method from the viewpoint of the saddle-point approx-
imation, and we show that it is wrong in the above situation. The difference of phases among
different dominant saddles bring the important physical information, but it is lost in the complex
Langevin method at least in the semiclassical regime.
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