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1. Introduction

Complex Langevin dynamics has solved the sign problem in a number of theories with a com-

plex weight due to a nonzero chemical potential [1, 2], including heavy dense QCD [3–5], and

progress for QCD with lighter quarks is underway [6–8]. However, the presence of the fermion

determinant causes a theoretical problem, since the Langevin drift is then no longer holomorphic:

zeroes of the determinant cause poles in the drift. In practice, this may lead to incorrect conver-

gence, but not necessarily so [9–11]. Since the formal justification [12,13] relies (among others) on

holomorphicity a reconsideration of the derivation is required. This is sketched below. The inter-

play between the poles and the real and positive distribution sampled during the Langevin process

turns out to be essential and this is studied in a sequence of models, with the aim to extract generic

lessons. This contribution is based on Ref. [14] and accompanied by Ref. [15].

2. Formal derivation revisited

We will start with revisiting the formal derivation and justification of the complex Langevin

approach [12, 13] and point out where the arguments have to be amended to include meromorphic

drifts. The approach hinges on the equivalence of two expectation values, one defined with respect

to the original complex weight ρ(x) and one with respect to the real and positive weight P(x,y) on

the analytically extended manifold, i.e.,

〈O〉ρ(t) =

∫
dxρ(x, t)O(x), 〈O〉P(t) =

∫
dxdyP(x,y; t)O(x+ iy). (2.1)

These distributions satisfy the Fokker-Planck equations (we consider real noise only [12])

ρ̇(x, t) = ∇x [∇x −K(x)]ρ(x, t), Ṗ(x,y; t) = [∇x (∇x −Kx)−∇yKy]P(x,y; t), (2.2)

with the Langevin drift terms

K(z) = ∇zρ(z)/ρ(z), Kx = ReK(z), Ky = ImK(z). (2.3)

Success is obtained when these expectation values are equal: 〈O〉ρ(t) = 〈O〉P(t).

The equivalence can indeed by demonstrated [12,13], provided that 1) the drift and observables

are holomorphic; 2) the distribution P(x,y) has fast decay at y → ±∞. In particular, the proof

requires partial integration at |y| → ∞ without boundary terms.

Let us now consider the case with (at least) one zero in measure, ρ(x= zp)= 0. In that case the

drift K(z) = ∇zρ(z)/ρ(z) has pole at z = zp and is no longer holomorphic, but only meromorphic.

Hence it is necessary to revisit the derivation. Note that QCD is an example that falls in this

category, since after integrating the quarks, the partition function is

Z =
∫

DU detM(U)e−SYM , with detM(U) = 0 for some U ∈ SL(N,C). (2.4)

It turns out that the derivation as above goes through, provided that the region around the pole is

excluded, i.e. |z−zp|> ε [14]. However, this yields the possibility of new potential boundary terms

at z ∼ zp, besides the ones at |y| → ∞. It is therefore necessary to study the behaviour of the product

of the distribution and observables, P(x,y)O(x+ iy), around z ∼ zp carefully.
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Let us make the following remark on the time evolution of holomorphic observables [14],

Ȯ(z; t) = L̃O(z; t), L̃ = [∇z +K(z)]∇z, (2.5)

with the solution

O(z; t) = eL̃tO(z;0) = ∑
k

tk

k!
L̃kO(z;0). (2.6)

Since L̃ has a pole at z = zp, one may expect O(z; t) to have an essential singularity at z = zp.

However, this potential disaster is counteracted by the vanishing of P(x,y) as z → zp, as well as by

the nontrivial angular dependence of P(x,y) around z= zp (see below), which soften the singularity.

3. Poles and the distribution

The flow pattern around a pole has a generic structure. Consider a zero at z = zp of order np,

ρ(x) = (x− zp)
npe−S(x). (3.1)

The drift is then given by

K(z) =
ρ ′(z)

ρ(z)
=

np

z− zp

−S′(z). (3.2)

In Fig. 1, we show the corresponding classical flow pattern, for zp = 0 and S(z) = 0. The attractive

and repulsive directions are generic and lead to particular angular dependence. We note that due to

this, multiple circlings of the pole are not expected.
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Figure 1: Generic flow pattern around a pole at z = zp = 0, with attractive and repulsive directions.

Given the formal justification, it is necessary to better understand the behaviour of the distribu-

tion (and observables) around the pole. Logically, there are three possibilities: 1) the pole is outside

the distribution; 2) the pole is on the edge of the distribution; 3) the pole is inside the distribution.

We will now encounter these cases in various models.
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4. Pole and distribution in simple model

We start with a simple but often studied example, with the distribution

ρ(x) = (x− zp)
npe−βx2

, β ∈ R, zp = xp + iyp ∈ C. (4.1)

Following the analysis of Ref. [16], it is easy to arrive at some essential and rigorous properties

of distribution P(x,y). For real β , the distribution is nonzero in a horizontal strip only. Hence the

decay at |y| → ∞ poses no problem and this possibility of breakdown is avoided. Depending on the

parameters (β ,yp,np), the pole is either located exactly on the edge of the strip or outside the strip.

This is illustrated in Fig. 2.

p
y=y+

y=y_
x

y

y=0
a)

y=y

b)

Figure 2: Strips in the xy plane where P(x,y) 6= 0. The pole is indicated with the red square. The red striped

region in b) is transient only.

These two cases are distinguished by [14]

a) y2
p < 2np/β : pole on edge ⇒ P(x,y) 6= 0 when 0 < y < yp;

b) y2
p > 2np/β : pole outside strip ⇒ P(x,y) 6= 0 when 0 < y < y− < yp.

For case b), with the pole outside, the standard justification still holds, since the pole is avoided as

the upper strip is a transient. Indeed, complex Langevin dynamics reproduces the exact results in

this case. Case a), with the pole on the edge, is more interesting. Here the results depend on the

properties of the distribution, determined by the parameter values.

We demonstrate this with an example, using zp = i,np = 2,β = 1.6,3.2,4.8, and show a

comparison of the exact results and the results obtained with CL, for the observable 〈zn〉, with

n = 1,2,3,4, in Fig. 3. It can be seen that there is no agreement for β = 1.6, but good agreement

for β = 3.2 and 4.8. Recall that for all three parameter values, P(x,y) is expected to be nonzero

for 0 < y < yp = 1, i.e. all the way up to the pole. Given the formal justification, this different

behaviour should be visible in properties of the distribution P(x,y).

This is demonstrated in Fig. 4, where the partially integrated distribution Py(y) =
∫

dxP(x,y)

is shown on a linear (left) and logarithmic (right) scale, for β = 1.6 (CL incorrect) and 3.2 (CL

consistent). We observe that for β = 1.6, the distribution is nonzero right up to the pole and seems

to go to zero linearly. In such a case, boundary terms at z = zp due to partial integration will

contribute and complex Langevin dynamics is not valid, as discussed in Sec. 2. On the other hand,

for β = 3.2, the decay is much faster, possibly exponentially, and hence partial integration poses no

problem for observables zn. Consistent with the formal justification, complex Langevin dynamics

then reproduces the correct results.

We conclude that it is possibly to reconcile the properties of the distribution, the formal justi-

fication and the success/failure of the complex Langevin process, in the presence of a pole.
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Figure 3: Observables 〈zn〉 versus n, obtained with complex Langevin (CL, open symbols) and exact results

(smaller filled symbols), for three β values.
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Figure 4: Partially integrated distributions Py(y) on a linear (left) and logarithmic (right) scale.

5. Towards more realistic models

The next step is to carry over the essence of this analysis to more realistic models, and devise

diagnostics which are also applicable in QCD. To do this, we first consider the U(1) one-link model

with the complex distribution [3]

ρ(x) = [1+κ cos(x− iµ)]np exp(β cosx). (5.1)

The conclusions can be summarised (loosely speaking) by stating that CL works when κ < 1 and

fails when κ > 1 [3, 9]. Hence we take here κ = 2 > 1 here. We also fix β = 0.3,µ = 1, and vary

the order of the zero, np = 1,2,4.

The distribution has zeroes at zp =±xp+ iµ and is again nonzero in a strip only, y− < y < y+,

so that the behaviour at |y| → ∞ is under control. We study the observables 〈eikz〉 with k =±1,±2.

The applicability of CL is found to depend strongly on np, and we find incorrect results for np =

1,2 but correct results for np = 4 [14]. In this case, the poles lie within the strip. However,

the poles pinch the distribution, i.e. approximately disconnected regions appear and the poles act

as a bottleneck. In order to present this in a way that is easily extendable to more complicated

theories, where the complexified configuration space is not accessible, we show the determinant
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Figure 5: Left: histogram of the determinant factor D in the U(1) model for np = 2 (on a logarithmic scale).

Right: partially integrated distribution for Re D, for three values of np.

factor D = 1+ κ cos(x− iµ) in the complex plane instead. Here D is defined such that the ‘full

determinant’ appears as Dnp in Eq. (5.1).

The result for np = 2 is shown in Fig. 5 (left). We observe that the pole pinches the distribution

and, even though the dynamics takes place in the complex plane, there are no multiple circlings

around the pole at the origin. The distribution is zero when D = 0. The way this occurs is shown

in Fig. 5 (right) for Re D, i.e. we have integrated over Im D. As in the model discussed above, we

note that the manner in which the distribution goes to zero is essential: for np = 1,2, it is too slow

for partial integration to work without boundary terms, while for np = 4, the distribution is in fact

zero when Re D < 0, partial integration can be applied, and the formal justification is valid.

We note that it is now easy to divide the configuration space into two disconnected regions,

with Re D ≶ 0. These regions can be treated separately with constrained partition functions Z±

and relative weights w± = Z±/(Z++Z−). We find that Z− typically contributes incorrect results.

However, we also find that w− ≪ w+, which is beneficial for the CL approach.
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Figure 6: Scatter plot of complex determinant in the SU(3) one-link model, for two choices of parameters

representing different aspects of HDQCD.

Finally we discuss the SU(3) effective one-link model, designed to understand heavy dense

QCD [14]. Here it is again straightforward to analyse the determinant and we found the same

structure as above, as demonstrated in Fig. 6. We find that the zero pinches the distribution, which

results in two disjoint areas. It is hence possible to analyse each region separately. When increasing
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the order of the zero (increasing np), we find that there is a stronger drift towards and then away

from pole, hence stronger pinching, and typically better agreement with expected results. The

analysis of determinant is easily extended to heavy dense QCD, while in full QCD it is numerically

more intensive. This is further discussed in Refs. [14, 15].

6. Summary

When using complex Langevin dynamics to solve QCD at nonzero chemical potential, the

Langevin drift has poles where the fermion determinant vanishes and is no longer holomorphic. It is

then necessary to revisit the formal justification of the approach. We found that the usual derivation

still holds, but correctness of the results depends crucially on the behaviour of the distribution

around the pole. Similar arguments are also provided in Ref. [17]. Subsequently we analysed a

number of models and found common features in all of these, namely that the poles will pinch the

distribution and result in disjoint regions, which can be analysed separately. When the zero is of

order np, e.g. when the determinant can be written as [detD]np , we found that larger np typically

yields better results. This conclusion seems not specific to simple models, but also correct in e.g.

heavy dense QCD [14, 15].
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